ORDERING PREFETCH IN TREES, SEQUENCES AND GRAPHS

Javed I. Khan
Technical Report 1999-12-03
Internetworking and Media Communications Research Laboratories
Department of Math \& Computer Science
Kent State University, 233 MSB, Kent, OH 44242
December 1999
javed@kent.edu

Abstract

Compared to hardware prefetching, the prefetching in Web systems faces quite high branching factor. Decision points mostly bifurcate the control flow tree in hardware due to the predominant if-then like program constructs. In contrast, in web there is no limit on the number of links in a page. In the case of hardware quite often all the parallel branches are prefetched- and in some cases condition can be pre-evaluated to determine the prefetch path. Neither is practical for web systems. There is critical for web systems to carefully evaluate all prefetch options. This report contains few analytical results, which show how to rank prefetch paths in various hyper linked graphs shown in Fig-A-D. It seems in most cases optimum prefetch path should depend both on the link transition probability as well as loading time of the component -rather than just the former.

1 Optimization Criterion

In a hyper-graph G, Lets $U=\left(a_{1}, a_{2}, a_{3} \ldots a_{1}\right)$, where $u_{i} \in G$, is the anchor sequence-- the sequence of nodes followed by a user. Let's Γ is the loading sequence in which the nodes are loaded in the cache (Clearly, $\mathrm{U} \subseteq \Gamma \subseteq$ \{nodes in G$\}$). Let p_{i} is the estimated probability that a user traverses a node n_{i} in roaming sphere G, and $T_{L, i}$ is the time the node a_{i} is fetched and $T_{P, i}$ is the time spent by the user in that node. Thus, we define an overall penalty function-- the expected cumulative readtime lag:
$T(\Gamma \mid U)=\sum_{i}^{U} p_{i} \max \left\{\left[T_{L, i}-\left(T_{L, i-1}+T_{P, i-1}\right)\right], 0\right\}$
The objective is to find the loading sequence Γ that will minimize the expected penalty $\mathrm{E}\{\mathrm{T}(\Gamma \mid \mathrm{U})\}$. It is important to note that this function optimizes with respect to all probable transitions of U, weighted by their transition probability.

2 Some Analytical Results

Theorem-1 (Branch Decision): Let $A=n_{c}$ is the current anchor point with direct transition paths to a set of candidate nodes $n_{1}, n_{2}, n_{3,--} n_{n}$, such that T_{i} is the estimated loading times of node n_{i}, and $\operatorname{Pr}\left[a_{n+1}=n_{i} \mid a_{n}=A\right]$ is the conditional link transition probability, then the average delay is minimum if the links are prefetched in-order of the highest priority Q_{i}, where:

$$
\begin{equation*}
Q_{i}=\frac{\operatorname{Pr}\left[a_{n+1}=n_{i} \mid a_{n}=A\right]}{T_{i}} \tag{A.1}
\end{equation*}
$$

Proof: Let us consider two pre-fetching sequences Seq1= $\left[n_{0}, n_{1}, n_{2} \ldots n_{m-1}, \mathbf{n}_{m}, n_{m+1}, \ldots n_{r-1}, \mathbf{n}_{r}\right.$, $\left.\mathrm{n}_{\mathrm{r}+1} \ldots, \mathrm{n}_{\mathrm{N}}\right]$ and Seq2=[$\left.\mathrm{n}_{\mathrm{o}}, \mathrm{n}_{1}, \mathrm{n}_{2} \ldots . \mathrm{n}_{\mathrm{m}-1}, \mathbf{n}_{\mathrm{r}}, \mathrm{n}_{\mathrm{m}+1}, \ldots \mathrm{n}_{\mathrm{r}-1}, \mathbf{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{r}+1} \ldots, \mathrm{n}_{\mathrm{N}}\right]$, where $\mathrm{m}<\mathrm{r}$. These two sequences are identical, except only two of the nodes n_{m} and n_{r} have been switched their positions. We also note that the nodes loaded prior to the $\mathrm{m}^{\text {th }}$ node and the nodes loaded after the $\mathrm{r}^{\text {th }}$ nodes are identical in both the sequences. We use the following expressions to denote the cost function due to these two nodes:

$$
C_{\text {prev. }}=\sum_{j=0}^{m-1}\left\{p_{j} \sum_{i=0}^{j} T_{i}\right\}, \text { and } C_{\text {post. }}=\sum_{j=r+1}^{N}\left\{p_{j} \sum_{i=0}^{j} T_{i}\right\},
$$

We also use $T_{p}=\sum_{i=0}^{m-1} T_{i}$ to denote cumulative load time of nodes loaded before \mathbf{n}_{m}. Let 's also denote $p_{i}=\operatorname{Pr}\left[a_{n+1}=n_{i} \mid a_{n}=A\right]$. Thus, the expected cost factor for sequence 1 is given by:

$$
\begin{align*}
C_{\text {seq1 }} & =C_{\text {prev }}+p_{m} \cdot\left(T_{p}+T_{m}\right)+p_{m+1} \cdot\left(T_{p}+T_{m}+T_{m+1}\right) \ldots . . \tag{A.2}\\
& +p_{r-1} \cdot\left(T_{p}+T_{m}+T_{m+1} \ldots+T_{r-1}\right)+p_{r} \cdot\left(T_{p}+T_{m}+T_{m+1} \ldots+T_{r-1}+T_{r}\right)+C_{p o s t} \\
& =C_{p r e v}+p_{m} \cdot\left(T_{p}+T_{m}\right)+\sum_{j=m+1}^{r-1}\left\{p_{j} \cdot\left(T_{p}+T_{m}+\sum_{i=m+1}^{j} T_{i}\right)\right\}+p_{r} \cdot\left(T_{p}+T_{m} \ldots+T_{r}\right)+C_{p o s t} \\
& =T_{m} \cdot\left\{\sum_{j=m+1}^{r-1} p_{j}\right\}+p_{r} \cdot\left(T_{m} \ldots+T_{r-1}\right)+K_{1}
\end{align*}
$$

Where:

$$
K_{1}=C_{\text {prev }}+p_{m} \cdot\left(T_{p}+T_{m}\right)+\sum_{j=m+1}^{r-1}\left\{p_{j} \cdot\left(T_{p}+\sum_{i=m+1}^{j} T_{i}\right)\right\}+p_{r} \cdot\left(T_{p}+T_{r}\right)+C_{p o s t}
$$

In a similar way, the cost for the sequence 2 is given by:

$$
\begin{align*}
C_{\text {seq } 2} & =C_{p r e v}+p_{r} \cdot\left(T_{p}+T_{r}\right)+p_{m+1} \cdot\left(T_{p}+T_{r}+T_{m+1}\right) \ldots . . \tag{A.3}\\
& +p_{r-1} \cdot\left(T_{p}+T_{r}+T_{m+1} \ldots+T_{r-1}\right)+p_{m} \cdot\left(T_{p}+T_{r}+T_{m+1} \ldots+T_{r-1}+T_{m}\right)+C_{p o s t} \\
& =C_{p r e v}+p_{r} \cdot\left(T_{p}+T_{r}\right)+\sum_{j=m+1}^{r-1}\left\{p_{j} \cdot\left(T_{p}+T_{r}+\sum_{i=m+1}^{j} T_{i}\right)\right\}+p_{m} \cdot\left(T_{p}+T_{m} \ldots+T_{r}\right)+C_{p o s t} \\
& =T_{r} \cdot\left\{\sum_{j=m+1}^{r-1} p_{j}\right\}+p_{m} \cdot\left(T_{m+1} \ldots+T_{r}\right)+K_{2}
\end{align*}
$$

Technical Report 1999-12-03
Internetworking and Media Communications Research Laboratories
Department of Math \& Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

Where,

$$
K_{2}=C_{p r e v}+p_{r} \cdot\left(T_{p}+T_{r}\right)+\sum_{j=m+1}^{r-1}\left\{p_{j} \cdot\left(T_{p}+\sum_{i=m+1}^{j} T_{i}\right)\right\}+p_{m} \cdot\left(T_{p}+T_{m}\right)+C_{p o s t}
$$

We now compare the estimated delay costs of these sequences, and show that under the given condition (A.1) one will be always lesser than the other. Both (A.2) and (A.3) can be expanded as following:
$C_{\text {seq1 }}=T_{m} \cdot\left(p_{m+1}+\ldots .+p_{r-1}\right)+p_{r} \cdot\left(T_{m} \ldots+T_{r-1}\right)+K_{1}$
$C_{\text {seq } 2}=T_{r} \cdot\left(p_{m+1}+\ldots+p_{r-1}\right)+p_{m} \cdot\left(T_{m+1} \ldots+T_{r}\right)+K_{2}$
Rearrangement of the terms will show that $K_{1}=K_{2}$. Additionally, if:

$$
\begin{equation*}
\frac{p_{m}}{T_{m}} \geq \frac{p_{m+i}}{T_{m+i}} \tag{A.4}
\end{equation*}
$$

Then $T_{m} \cdot p_{m+i} \leq p_{m} \cdot T_{m+i}$, and since $\mathrm{r}>\mathrm{m}, p_{r} \cdot T_{r-i} \cdot \leq T_{r} \cdot p_{r_{-i}}$, for all positive i. Thus, the left terms of (A.2) are smaller than the middle terms of (A.3). Similarly, the middle terms of (A.2) are smaller than the left terms of (A.3). Thus, $T_{m} \cdot\left(p_{m+1}+\ldots .+p_{r-1}\right) \leq p_{m} \cdot\left(T_{m+1} \ldots+T_{r}\right)$ and $p_{r} \cdot\left(T_{m} \ldots+T_{r-1}\right) \leq T_{r} \cdot\left(p_{m+1}+\ldots+p_{r-1}\right)$. Thus, $C_{\text {seq1 }} \leq C_{\text {seq } 2}$ is always true under condition A.4, which is the priority given is equation (A.1) of individual nodes (proved).

Corollary-2.1 (Sequence Decision): If two nodes are in a sequence, then the preceding node has to be loaded first.

Proof: below we provide a direct proof of this intuitive corollary. Let nodes n_{1} and n_{2} are in a sequence, n 1 preceding n 2 . We compare the costs for two sequences Seq1= [.. $\left.\mathrm{n}_{1}, \mathrm{n}_{2} \ldots\right]$ Seq2= $\left[\ldots, \mathrm{n}_{2}, \mathrm{n}_{1} \ldots\right]$. Since, n_{2} is traversed only after n_{2} the state probabilities $p_{2} \leq p_{1}$. The response delay count begins for the second node, after the first node is loaded and then read i.e. at time $\left(\mathrm{T}_{1}+\mathrm{R}_{1}\right)$. Thus, the cost of first sequence is given by:

$$
\begin{equation*}
\left.C_{s e q 1}=p_{1} \cdot T_{1}+p_{2} \cdot \max \left\{T_{1}+T_{2}-\left(T_{1}+R_{1}\right), 0\right\}=p_{1} \cdot T_{1}+p_{2} \cdot \max \left\{T_{2}-R_{1}\right), 0\right\} \tag{B.1}
\end{equation*}
$$

Similarly, the cost for the second sequence is given by:

$$
\begin{align*}
C_{\text {seq } 2} & =p_{1} \cdot\left(T_{1}+T_{2}\right)+p_{2} \cdot \max \left\{T_{1}-\left(T_{1}+T_{2}+R_{1}\right), 0\right\} \tag{B.2}\\
& =p_{1} \cdot\left(T_{1}+T_{2}\right)
\end{align*}
$$

Since, the second node is loaded before the first node so it will be immediately available after the first node is read. If $\left.\max \left\{T_{2}-R_{1}\right), 0\right\}=0$ then, $0 \leq p_{1} \cdot\left(T_{1}+T_{2}\right)$. Thus, $C_{\text {seq } 1} \leq C_{\text {seq } 2}$. On the other hand, if, $\left.\max \left\{T_{2}-R_{1}\right), 0\right\}=T_{2}-R_{1} \quad$,then also, $p_{1} \cdot T_{1}+p_{2} \cdot\left(T_{2}-R_{1}\right) \leq p_{1} \cdot\left(T_{1}+T_{2}\right)$, or $p_{2} \cdot\left(T_{2}-R_{1}\right) \leq p_{1} \cdot T_{2}$. Since, $p_{2} \leq p_{1}$ and $T_{2}-R_{2} \leq T_{2}$. Thus, for this case also $C_{\text {seq1 }} \leq C_{\text {seq2 }}$. Note: If node 2 can be reached via a second path, then state probability $\mathrm{p} 2<=\mathrm{p} 1$ may not be true (proved).

Theorem-2 (Tree Decision): If the sequence $\left\{n_{1}, n_{2}, n_{3}, \ldots n_{d}\right\}$ are the nodes in the path in a tree from the current anchor $A=n_{0}$ to a candidate node n_{d}, at depth d and T_{d} is it's estimated loading time, then the priority Q_{d} is given by the product of the conditional transition probabilities along the path such that:

$$
\begin{equation*}
Q_{d}=\frac{\prod_{i=c}^{d} \operatorname{Pr}\left[a_{i+1}=n_{i+1} \mid a_{i}=n_{i}\right]}{T_{d}} \tag{C.1}
\end{equation*}
$$

Proof: Without loss of generality, the question we will address in this proof is that should we bring a node from depth d before fetching a node from depth 1 ? Consequently, we compare two prefetching sequences Seq $1=\left[\ldots . \mathbf{n}_{1}, \mathbf{n}_{2}, \mathbf{n}_{3}, \ldots.\right]$ and Seq $2=\left[\ldots \mathbf{n}_{1}, \mathbf{n}_{3}, \mathbf{n}_{2}, ..\right]$. Here node 1 is the highest priority node at depth 1 , and \mathbf{n}_{2} is one of its lower priority sibling in the same depth and thus yet not fetched, and \mathbf{n}_{3} is the new node at depth d exposed by the fetching of node 1. For removing some clatter in this proof, without loosing the generality of proof, we also this time assume that the set of nodes between these switched nodes is empty. Lets also assume that

$$
p_{i=2}=\operatorname{Pr}\left[a_{n+1}=n_{2} \mid a_{n}=A\right] \text { and } p_{3}=\prod_{i=c}^{d} \operatorname{Pr}\left[a_{i+1}=n_{i+1} \mid a_{i}=n_{i}\right]
$$

Thus, the cost corresponding to these sequences are respectively given by the following expressions.

$$
\begin{align*}
& C_{s e q 1}=p_{1} \cdot T_{1}+p_{2} \cdot\left(T_{1}+T_{2}\right)+p_{3} \cdot \max \left\{T_{1}+T_{2}+T_{3}-\left(T_{1}+R_{1}\right), 0\right\} \tag{C.2}\\
& C_{s e q 2}=p_{1} \cdot T_{1}+p_{2} \cdot\left(T_{1}+T_{2}+T_{3}\right)+p_{3} \cdot \max \left\{T_{1}+T_{3}-\left(T_{1}+R_{1}\right), 0\right\} \tag{C.3}
\end{align*}
$$

In both of the cases, we begun counting the response delay for n_{3} after n_{1} is loaded and read. The proof that, $C_{s e q 1} \leq C_{s e q 2}$ requires that we show under condition (1b):

$$
\begin{equation*}
p_{3} \cdot \max \left\{T_{2}+T_{3}-R_{1}, 0\right\} \leq p_{2} \cdot T_{3}+p_{3} \cdot \max \left\{T_{3}-R_{1}, 0\right\} \tag{C.4}
\end{equation*}
$$

Below, we show it by considering the following three cases.
Case-1: Let us consider that case, when, $\max \left\{T_{2}+T_{3}-R_{1}, 0\right\}=T_{2}+T_{3}-R_{1}$, and $\max \left\{T_{3}-R_{1}, 0\right\}=T_{3}-R_{1}$. Then the above reduces that we show that:
$p_{3}\left(T_{2}+T_{3}-R_{1}\right) \leq p_{2} \cdot T_{3}+p_{3} \cdot\left(T_{3}-R_{1}\right)$, i.e. $p_{3} \cdot T_{2} \leq p_{2} \cdot T_{3}$, which is the case if $\frac{p_{2}}{T_{2}} \geq \frac{p_{3}}{T_{3}}$
Case 2: Let us consider that $\max \left\{T_{2}+T_{3}-R_{1}, 0\right\}=0$. Then we are required to show that $p_{3} \cdot \max \left\{T_{2}+T_{3}-R_{1}, 0\right\}=0 \leq p_{2} \cdot T_{3}+p_{3} \cdot \max \left\{T_{3}-R_{1}, 0\right\}$, which is always the case.

Case 3: Let us consider the only remaining case where, $\max \left\{T_{2}+T_{3}-R_{1}, 0\right\}=T_{2}+T_{3}-R_{1}$, but $\max \left\{T_{3}-R_{1}, 0\right\}=0$. Then, $T_{3}-R_{1} \leq 0$ and we require to show that, $p_{3} \cdot\left(T_{2}+T_{3}-R_{1}\right) \leq p_{2} \cdot T_{3}$.

Since, $T_{3}-R_{1} \leq 0$, then to show $p_{3} \cdot\left(T_{2}+T_{3}-R_{1}\right) \leq p_{2} \cdot T_{3}$, thus it should be sufficient to show that $p_{3} \cdot T_{2} \leq p_{2} \cdot T_{3}$. Which is the case if $\frac{p_{2}}{T_{2}} \geq \frac{p_{3}}{T_{3}}$. Thus, for all situations $C_{\text {seq1 }} \leq C_{\text {seq2 }}($ proved $)$.

Theorem-3 (Graph Decision): For general graph $G\left(V_{G}, E_{G}\right)$ the node priority can be determined by computing order-n Markov state probability p_{i}. For a node n_{i}, with the estimated loading time T_{i} the priority function can be computed as:

$$
\begin{equation*}
Q_{i}=\frac{p_{i}}{T_{i}} \tag{D.1}
\end{equation*}
$$

Proof: Let us consider that a general graph, with link transition probabilities $p_{i j}$ and state probabilities p_{n}. Let the current anchor node is n_{0}. We again consider two nodes, both un-fetched, but one n_{2} at depth 1 from current anchor that can be called immediately, and another n_{3} somewhere deep in the graph, and which can be accessed via multiple paths and at least one preceding node of which have been fetched. Since, n_{3} is now in the pre-fetch set, a root of n_{3} must also be in the pre-fetch set with higher priority than n_{2}. Let this node be n_{1}. Let $\mathrm{L}(0,3)=\left\{1_{1}, 1_{2}, 1_{3}\right.$. $\left..1_{n}\right\}$ is the set of all the paths through which n_{3} can be reached from n_{0}. Consequently, we consider two pre-fetching sequences Sequence $1=\left[\ldots . \mathbf{n}_{1}, \mathbf{n}_{2}, \mathbf{n}_{3}, \ldots.\right]$ and Sequence $2=\left[\ldots . \mathbf{n}_{1}, \mathbf{n}_{3}, \mathbf{n}_{2}, ..\right]$. Also, for reducing some clatter in this proof, without loosing the generality of proof, we also this time assume that the set of nodes between these switched nodes is empty. Let $\operatorname{Pr}\left(1=l_{\mathrm{i}} \mid a 0=\mathrm{n}_{\mathrm{o}}\right)$ is the probability of traversing path $0-2$ via path l_{i}. Let $\mathrm{R}\left(\mathrm{l}_{\mathrm{i}}\right)$ is the cumulative rendering time of all nodes in path 1_{i} except n 3 . Then the cost of sequence 1 and sequence 2 are respectively given by:

$$
\begin{align*}
& C_{\text {seq1 }}=p_{2} \cdot\left(T_{1}+T_{2}\right)+\sum_{l}^{L} \operatorname{Pr}\left[l=l_{03}^{i} \mid A_{n}=n_{0}\right] \cdot \max \left\{T_{1}+T_{2}+T_{3}-R\left(l_{03}^{i}\right), 0\right\} \tag{D.2}\\
& C_{\text {seq } 2}=p_{2} \cdot\left(T_{1}+T_{2}+T_{3}\right)+\sum_{l}^{L}\left\{\operatorname{Pr}\left[l=l_{03}^{i} \mid A_{n}=n_{0}\right] \cdot \max \left[T_{1}+T_{3}-R\left(l_{03}^{i}\right), 0\right]\right\} . \tag{D.3}
\end{align*}
$$

Note, there are other nodes involved along each path, each of which must be loaded and read before n_{3} is reached. In a more precise sense, only after the current node has been requested by the user then the delay counter for the current node should begin. Thus D. 3 overestimates the penalty by not issuing credit for the time needed in loading the preceding nodes along the path, which may or may not be already in the cache. (However, credit is issued for reading times). For fairness, however, we have taken out this credit in both the sequences. Now we consider the following cases:

Case A:
Now, if $\max \left\{T_{1}+T_{2}+T_{3}-R\left(l_{03}^{i}\right), 0\right\}=0$, then also true is $\max \left\{T_{1}+T_{3}-R\left(l_{03}^{i}\right), 0\right\}=0$. Thus, $C_{\text {seq1 }} \leq C_{\text {seq } 2}$ always.

Case B:

On the other hand, if $\max \left\{T_{1}+T_{3}-R\left(l_{03}^{i}\right), 0\right\}=0$ then $\max \left\{T_{1}+T_{2}+T_{3}-R\left(l_{03}^{i}\right), 0\right\} \leq\left|T_{2}\right|$.
Thus,

$$
\begin{aligned}
& C_{\text {seq1 } 1} \leq p_{2} \cdot\left(T_{1}+T_{2}\right)+\sum_{l}^{L} \operatorname{Pr}\left[l=l_{03}^{i} \mid A_{n}=n_{0}\right] \cdot\left|T_{2}\right|=p_{2} \cdot\left(T_{1}+T_{2}\right)+p_{3} \cdot\left|T_{2}\right| \cdot \\
& C_{\text {seq } 2}=p_{2} \cdot\left(T_{1}+T_{2}+T_{3}\right) \cdot \text { Thus when, } p_{3} \cdot T_{2} \leq p_{2} \cdot T_{3}, \text { then also } C_{\text {seq } 1} \leq C_{\text {seq } 2} .
\end{aligned}
$$

Case C: otherwise:

$$
\begin{aligned}
& C_{\text {seq1 }}=p_{2} \cdot\left(T_{1}+T_{2}\right)+p_{3} \cdot\left(T_{1}+T_{2}+T_{3}\right)-\sum_{l}^{L} \operatorname{Pr}\left[l=l_{03}^{i} \mid A_{n}=n_{0}\right] \cdot R\left(l_{03}^{i}\right) \\
& C_{\text {seq } 2}=p_{2} \cdot\left(T_{1}+T_{2}+T_{3}\right)+p_{3} \cdot\left(T_{1}+T_{3}\right)-\sum_{l}^{L} \operatorname{Pr}\left[l=l_{03}^{i} \mid A_{n}=n_{0}\right] \cdot R\left(l_{03}^{i}\right)
\end{aligned}
$$

Thus, when, $p_{3} \cdot T_{2} \leq p_{2} \cdot T_{3}$, then also $C_{s e q 1} \leq C_{\text {seq } 2}$ (proved).

Fig-A Singular branch

Fig-B Sequence

Fig-D General graph

Fig-C Tree

