
EFSM/SDL modeling of the original TCP standard (RFC793) and the
Congestion Control Mechanism of TCP Reno

Raid Y. Zaghal and Javed I. Khan

Networking and Media Communications Research Laboratories
Department of Computer Science, Kent State University

233 MSB, Kent, OH 44242
javed|rzaghal@cs.kent.edu

Abstract—in this document we provide a complete EFSM/SDL model for the original TCP standard that was
proposed in RFC 793 and the congestion control mechanism of TCP Reno. We have developed this model as a
supplement material for the (InTraN) paradigm [Zag05] which we have developed recently for extensible
networking. We felt that this model can be beneficial for other researchers who might be interested in the formal
description of the TCP standard using the EFSM/SDL notation.

1. Introduction
The original Transmission Control Protocol (TCP) standard was described in RFC 793 [Pos81] which provided a
formal description of a highly reliable host-to-host protocol between hosts in a packet-switched network. Although
many enhancement has been made on the original standard and different generations of TCP has been proposed
(e.g., Taho, Reno, Vegas), most of the fundamental features have remained unchanged. The SDL model presented
here extends the original TCP standard by adding the congestion control mechanisms proposed by Jacobson. These
include the slow start-congestion avoidance mechanism [Jac88], and the fast retransmit-fast recovery mechanism
[Jac90]. Other TCP variants can also be modeled by simply extending the original model in the same fashion.

This report is organized as follows: in the next section we provide some background information on the EFSM/SDL
notation, in section 3 we formally present the TCP EFSM/SDL model, in section 4 we show how other TCP variants
(e.g., TCP Vegas) can modeled based on the SDL model presented in this document, and in section 5 we conclude
the document.

2. Background: EFSM/SDL
SDL (Specification and Description Language) [Ell97, SDLfrm] is an ITU-standardized language for the formal
description of communication protocols. It is also suited for any application based on the finite state machine
concept, such as circuit design. The programming model used by SDL is based on extended finite state machines
(EFSM) [Ell97, Byu01]. SDL augments the finite state machine model by providing variables and timers and by
supporting object-oriented programming. Informally, the EFSM is composed of states and transitions among them.
For a transition to occur, the system must receive an event from the environment which triggers corresponding
actions. After performing the actions, the EFSM produces output signals to the environment. An SDL system is
composed of several protocol entities; each entity is designed as a single EFSM. Formally, An EFSM is a 6-tuple (S,

0s , E, f, O, V), where S is a set of states,
0s is an initial state, E is a set of events, f is a state transition function, O is

a set of output signals, and V is a set of variables. The function f returns a next state, a set of output signals, and an
action list for each combination of a current state and an input event. An EFSM also uses predicates to control the
behavior of the protocol. These predicates usually allow similar states to be grouped therefore reducing the total
number of states.

 2

3. TCP EFSM/SDL Model

3.1. Remarks and Simplifying Assumptions:
1- Always remembers the current state in the variable (CurrState) and the previous state in the variable

(PrevState)
2- The TCP endpoint has unlimited buffer space (e.g., buffer space to queue SENDs and RECEIVEs is always

available)
3- In any state, whenever a segment is sent, the segment is added to the Retransmission Queue (Rexmt Queue)

and the retransmission timer (REXMT) is started.
4- The (REXMT TIMEOUT) event has been modeled in all states except (FIN-WAIT-2, TIME-WAIT,

CLOSED), since in these states the endpoint have already received an ACK of its FIN segment (i.e., will
not transmit any segments afterwards).

5- The (TIMEWAIT TIMEOUT) event has been modeled in (TIME-WAIT) state only. In all other states, this
timer is irrelevant.

3.2. The following were not modeled from RFC 793:
1- Security/Compartment and Precedence processing.
2- The STATUS user call.
3- The PUSH mechanism (i.e., PSH control bit)
4- The URGENT mechanism (i.e., URG control bit)

3.3. The TCP EFSM=(S, s0, E, f, O, V):
1. States (S) = {CLOSED, LISTEN, SYN-SENT, SYN-RCVD, ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2,

CLOSING, CLOSE-WAIT, LAST-ACK, TIME-WAIT} .

2. Initial State (s0) = {CLOSED}

3. Events (E)

User Calls (subscriber events) = {Active OPEN, Passive OPEN, SEND, RECEIVE, CLOSE, ABORT} .

Arriving Segments (service events) = {SEGMENT ARRIVE (SYN, ACK, RST, FIN)} .

Timeouts (internal events) = {REXMT TIMEOUT, TIME-WAIT TIMEOUT, USER-TIME TIMEOUT} .

4. Transition Function (f) = {described in the SDL figures below}

5. Output Signals (O) = {Return (message), Return Error (error message), Signal User (message), and Segment
(SEG)} .

6. Variables (V)

A. Segment Variables
SEG.SEQ: segment sequence number
SEG.ACK: segment acknowledgment number
SEG.LEN: segment length
SEG.WND: segment window (Receiver Advertised Window)
SEG.CTL: control bits (ACK, RST, SYN, FIN)

B. Send Sequence Variables

SND.UNA: send unacknowledged
SND.NXT: send next

 3

SND.WND: send window
ISS: initial send sequence number

C. Receive Sequence Variables

RCV.NXT: receive next
RCV.WND: receive window
IRS: initial receive sequence number

D. Timers

REXMT: Retransmission Timer
TIMEWAIT: Time-wait Timer
USERTIME: User Timer

E. Counters

dACK: duplicate ACK counter
ExpBoff: exponential backoff counter

F. Other

CurrState: Current State
PrevState: Previous State
RTO: Retransmission Timer Out value
RTT: Round Trip Time—used to calculate RTO
SRTT: Smoothed RTT—used to calculate RTO
CWND: Congestion window
MSS: Maximum Segment Size
SSthresh: Slow Start Threshold
MSL: Maximum Segment Lifetime

G. Buffers

Send Buffer: Send Buffer [referred to in the table as SBuff]
RCV Buffer: Receive Buffer [referred to in the table as RBuff]
OO RCV Buffer: Out of Order Receive Buffer [referred to in the table as ORBuff]
Rexmt Queue: Holds sent but unacknowledged segments [referred to in the table as RexQ]
User Calls Queue: Holds outstanding user calls (e.g., SEND, RECEIVE, CLOSE) [referred to in the table
as UCallsQ]

In the following pages (5 to 44) we present the EFSM/SDL model. Each figure has a number in the upper-right
corner. Figure 0 on the next page depicts the EFSM diagram and the subsequent figures (1 to 39) provide the SDL
description of all transitions.

EFSM TCP

app: Active OPEN
create TCB
send: SYN app: Passive OPEN

create TCB
send: ---

app: SEND
send: SYN

app: CLOSE
delete TCB

recv: SYN
send: SYN, ACK

app: CLOSE
delete TCB

CLOSED

LISTEN

SYN-RCVD

SYN-SENT

ESTABLISHED

FIN-WAIT-1

FIN-WAIT-2

CLOSING

TIME-WAIT

CLOSE-WAIT

LAST-ACK

recv: SYN
send: SYN, ACK

recv: SYN, ACK
send: ACK app: CLOSE

send: FIN

recv: ACK
send: ---

app: CLOSE
send: FIN

recv: FIN
send: ACK

recv: ACK
send: ---

recv: FIN
send: ACK

recv: ACK
send: ---

recv: FIN
send: ACK

Timeout=2MSL
delete TCB

app: CLOSE
send: FIN

recv: ACK
send: ---

 recv: FIN, ACK
send: ACK

Active Close

Passive Close

(0)

 5

Process TCP

CLOSED

OPEN
Call

Active open?

Create and initialize
TCB

(yes)

(no)

Segment (
SEQ=ISS,
CTL=SYN)

Select new
ISS

SND.UNA := ISS
SND.NXT := ISS+1

SYN-SENT

Create and initialize
TCB

LISTEN

(yes)

Foreign socket
specified?

Return Error
(foreign socket not
specified)

(no)

Passive open:
Do not need to
specify foreign
socket—can be
filled by the
incoming SYN.

SEND
Call

Return Error
(Connection does not
exist)

(1)

 6

Process TCP

CLOSED

RECEIVE
Call

Return Error
(Connection does not
exist)

CLOSE
Call

Return Error
(Connection does not
exist)

ABORT
Call

Return Error
(Connection does not
exist)

SEGMENT
ARRIVES

SEG.ACK is on?

Segment (
SEQ=SEG.ACK,
CTL=RST)

Segment (
SEQ=SEG.SEQ+SEG.LEN,
CTL=RST,ACK)

(yes)

(no)

(2)

 7

Process TCP

LISTEN

OPEN
Call

Fill foreign socket
information in TCB

(no)

Segment (
SEQ=ISS,
CTL=SYN)

Select new
ISS

SND.UNA := ISS
SND.NXT := ISS+1

SYN-SENT

(yes)
 Foreign socket

specified?

Return Error
(foreign socket not
specified)

Change
connection from
passive to active.

SEND
Call

Fill foreign socket
information in TCB

(no)

Select new
ISS

SND.UNA := ISS
SND.NXT := ISS+1

SYN-SENT

(yes)
 Foreign socket

specified?

Return Error
(foreign socket not
specified)

Queue data (if any) on
the sender's queue for
transmission during
the ESTABLISHED
state.

Change
connection from
passive to active.

Segment (
SEQ=ISS,
CTL=SYN)

(3)

 8

Process TCP

LISTEN

RECEIVE
Call

Queue for processing
after entering the
ESTABLISHED state

CLOSE
Call

Any queued
RECEIVEs?

Return Error
(Connection closing)

Delete TCB

CLOSED

(yes)

(no)

ABORT
Call

Return Error
(Connection reset)

CLOSED

(yes)

(no)

Delete TCB

Any queued
RECEIVEs?

(4)

 9

Process TCP

LISTEN

SEGMENT
ARRIVE

(yes)

Segment (
SEQ=SEG.ACK,
CTL=RST)

(no)

SEG.RST is on?

SEG.ACK is on?

(yes)

(no)

SEG.SYN is on?

(yes)

RCV.NXT := SEG.SEQ+1
IRS := SEG.SEQ

Select new ISS

Segment (
SEQ=ISS,
ACK=RCV.NXT,
CTL=SYN,ACK)

SND.NXT := ISS+1
SND.UNA := ISS

SYN-RECEIVED

(no)

SET (RTO, REXMT)

Segment (
From Rexmt Queue

)

REXMT
TIMEOUT

CalcRTO (RTO)

(5)

 10

Process TCP

SYN-SENT

OPEN
Call

Return Error
(Connection already
exists)

SEND
Call

Queue data for
transmission during
the ESTABLISHED
state.

RECEIVE
Call

Queue for
processing during
the ESTABLISHED
state.

CLOSE
Call

Any queued SENDs or
RECEIVEs?

Return Error
(Connection closing)

CLOSED

(yes)

(no)

Delete TCB

ABORT
Call

Return Error
(Connection reset)

CLOSED

(yes)

(no)

Delete TCB

Any queued SENDs or
RECEIVEs?

SET (RTO, REXMT)

Segment (
From Rexmt Queue

)

REXMT
TIMEOUT

CalcRTO (RTO)

(6)

 11

Process TCP

SYN-SENT

SEGMENT
ARRIVE

SEG.ACK is on?

(yes)

(no)

(SEG.ACK =< ISS) OR

(SEG.ACK > SND.NXT)

(yes)

(no)

Segment (
SEQ=SEG.ACK,
CTL=RST)

(SEG.ACK >= SND.UNA) AND

(SEG.ACK <= SND.NXT)

(yes)

(no)

SEG.RST is on?

Return Error
(Connection reset)

CLOSED

Delete TCB

SEG.RST is on?

(yes)

(yes)

SEG.SYN is on?

(no)

(no)

ACK is not
acceptable

No ACK
and no RST

SEG.SYN is on?

Acceptable ACK
and no RST

(no)

(no)

RCV.NXT := SEG.SEQ+1
IRS := SEG.SEQ
SND.UNA := SEG.ACK

RCV.NXT := SEG.SEQ+1
IRS := SEG.SEQ

Remove ACKed segments
from the Rexmt Queue

SND.UNA > ISS

(yes)

(yes)

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

Segment (
SEQ=ISS,
ACK=RCV.NXT,
CTL=SYN,ACK)

ESTABLISHED

SYN-RECEIVED

(yes)

Queue any data or controls
for processing during the
ESTABLISHED state

May include data or
controls queued for
transmission.

Our SYN has been
ACKed. Acknowledge the
received SYN and move
to ESTABLISHED. (no)

(7)

 12

Process TCP

SYN-RECEIVED

OPEN
Call

Return Error
(Connection already
exists)

SEND
Call

Queue data for
transmission during
the ESTABLISHED
state.

RECEIVE
Call

Queue request for
processing during
the ESTABLISHED
state.

CLOSE
Call

(any new SENDs issued)
OR (any queued SENDs)

FIN-WAIT-1

(no)

(yes)

ABORT
Call

CLOSED

Delete TCB

Segment (
SEQ=SND.NXT,
CTL=FIN)

Queue for processing
after entering the
ESTABLISHED state

Segment (
SEQ=SND.NXT,
CTL=RST)

Return Error
(Connection reset)

(yes)

(no)

Any queued SENDs or
RECEIVEs?

(8)

 13

Process TCP

SYN-RECEIVED

SEGMENT
ARRIVE

Check Segment SEQ
(SEG.SEQ, SEG.LEN,
RCV.NXT, RCV.WND)

[Not-acceptable]

SEG.RST is on

previous state was
LISTEN?

Connection was
initiated with a
Passive OPEN

Signal User
(Returning to LISTEN)

LISTEN

(yes)

Remove all segments on
Rexmt Queue

Remove all segments on
Rexmt Queue

(yes)

Return Error
(Connection refused)

Connection was
initiated with an
Active OPEN

Delete TCB

CLOSED

(no)

[Acceptable]

SEG.SYN is on

(no)

Segment (
SEQ=SND.NXT,
CTL=RST)

Any
queued SENDs or

RECEIVEs?

Return Error
(Connection reset)

(yes)

(no)

Delete TCB

CLOSED

(yes)
 Error! Send a

reset and flush all
segment queues

SR2

(no)

SET (RTO, REXMT)

Segment (
From Rexmt Queue

)

REXMT
TIMEOUT

CalcRTO (RTO)

SEG.RST is on

(yes)

(no)

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

(9)

 14

Process TCP

SR2

SEG.ACK is on

(no)

(yes)

ACK bit is off!
Drop segment
and return.

SND.UNA =< SEG.ACK =< SND.NXT

ESTABLISHED

(yes)
 ACK is valid, enter

ESTABLISHED state and
continue processing.

SEG.FIN is on

(no)

(yes)

CLOSE-WAIT

Return Error
(Connection reset)

(yes)

Delete TCB

Error! Send a
reset and flush all
segment queues

Segment (
SEQ=SND.NXT,
CTL=RST)

Any
queued SENDs or

RECEIVEs?

(no)

CLOSED

(no)

FIN bit Processing
(SND.NXT, RCV.NXT,
SEG.SEQ)

(10)

 15

Process TCP

ESTABLISHED

OPEN
Call

Return Error
(Connection already
exists)

SEND
Call

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

SND.NXT < (SND.UNA+SND.WND)

SET (RTO, REXMT)

SND.NXT := SND.NXT +
SEG.LEN

(no)

(yes)

Queue data in the Send Buffer

Create a new segment from
the data in the Send Buffer

Send Buffer has
sufficient data to satisfy

a new segment?

(no)

Wait until enough data
has been accumulated in
the buffer before sending
a new segment.

Piggybacked ACK

Add data just sent to the
Rexmt Queue

(yes)

CalcRTO (RTO)

(11)

 16

Process TCP

ESTABLISHED

RECEIVE
Call

queued received segments are
sufficient to satisfy this

(no)

(yes)

Queue this
RECEIVE request

Reassemble queued incoming
segments into the RCV Buffer

Signal User
(Data ready in RCV Buffer)

CLOSE
Call

(yes)

Any
queued SENDs?

Queue this CLOSE
request until all queued
SENDs have been
segmentized and sent.

Segment (
SEQ=SND.NXT,
CTL=FIN)

Number of

request?

FIN-WAIT-1

(no)

ABORT
Call

CLOSED

Delete TCB

Segment (
SEQ=SND.NXT,
CTL=RST)

Return Error
(Connection reset)

(yes)

(no)

Any queued SENDs or
RECEIVEs?

(12)

 17

Process TCP

ESTABLISHED

SEGMENT
ARRIVE

Check Segment SEQ
(SEG.SEQ, SEG.LEN,
RCV.NXT, RCV.WND)

SEG.RST is on

(yes)

(no)

[Not-acceptable]

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

SEG.RST is on

Signal User
(Connection Reset)

(yes)

(yes)

Delete TCB

CLOSED

(no)

[Acceptable]

(no)

Any
queued SENDs or

RECEIVEs?

Return Error
(Connection Reset)

SEG.SYN is on

Segment (
SEQ=SND.NXT,
CTL=RST)

Any
queued SENDs or

RECEIVEs?

Return Error
(Connection reset)

(yes)

(no)

Delete TCB

CLOSED

ES2

(no)

(yes)

(13)

 18

Process TCP

ES2

SEG.ACK is on

(no)

(yes)

ACK bit is off!
Drop segment
and return.

SND.UNA < SEG.ACK
�

 SND.NXT

Remove from the Rexmt
Queue any segments
which are thereby entirely
acknowledged by this ACK.

SND.UNA := SEG.ACK

ExpBoff := 1

SEG.ACK = SND.UNA

SND.WND := min (CWND,
SEG.WND)

dACK := dACK+1

(no)

dACK = 1

(no)

(yes)

SSthresh := max(2,
min (CWND, SND.WND/2))

CWND := SSthresh + 3

(yes)

Ignore second
duplicate ACK
and continue!

Duplicate ACK

(no)

New and
valid ACK. (yes)

Segment (
SEQ=SEG.ACK,
ACK=[?],
CTL =[?])

Release REXMT Timer

Release REXMT Timer

This is (Fast Retransmit)--
Retransmit lost segment
from the Rexmt Queue.

ES3

invalid ACK,
drop!

dACK = 2
 (no)

(yes)

ES4

Fourth or more
duplicate ACK—
perform (Fast
Recovery)

ES3

Window Update
(dACK, CWND,
SSthresh, SEG.LEN)

Third duplicate
ACK!

(14)

 19

Process TCP

ES3

(yes)

(no)
 SEG.SEQ = RCV.NXT

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

This is the lost segment!
Move the data of this
segment and all data in the
OO RCV Buffer to the
normal RCV Buffer—all
octets should be in
consecutive order.

(yes)

(no)

OO RCV Buffer empty?

Copy segment's data to
the RCV Buffer

Clear the OO RCV Buffer

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

Signal User (
Data ready in RCV
Buffer)

Add received data to the
temporary out of order receive
buffer: OO RCV Buffer.

RCV.WND := RCV.WND +
SEG.LEN

RCV.NXT := HSEG.SEQ +
HSEG.LEN

HSEG is the segment with
the highest sequence
number received thus far.

RCV.NXT := SEG.SEQ +
SEG.LEN

CLOSE-WAIT

(yes)

(no)

SEG.FIN is on?

FIN bit Processing
(SND.NXT, RCV.NXT,
SEG.SEQ)

(15)

 20

Process TCP

ES4

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

CalcRTO (RTO)

SET (RTO, REXMT)

SND.NXT := SND.NXT +
SEG.LEN

Create a new segment from
the data in the Send Buffer

Send Buffer has
sufficient data to satisfy

a new segment?

(no)

Add data just sent to the
Rexmt Queue

(yes)

ES3

(16)

 21

Process TCP

ESTABLISHED

REXMT
TIMEOUT

(ExpBoff > 1)
AND (ExpBoff < 64)

ExpBoff := ExpBoff × 2

(yes)

(no)

SET (ExpBoff × RTO,
REXMT)

Segment (
SEQ=From Rexmt Queue,
ACK=From Rexmt Queue
CTL =From Rexmt Queue)

SSthresh := max
(SND.WND/2, 2)

CWND := MSS

Retransmit lost segment
from the front of the
Retransmission Queue.

Reduce the slow start
threshold to half the
sender window,

and cut down the
congestion window to
one segment.

CalcRTO (RTO)

(17)

 22

Process TCP

FIN-WAIT-1

OPEN
Call

Return Error
(Connection already
exists)

SEND
Call

RECEIVE
Call

Return Error
(Connection Closing)

queued received segments are
sufficient to satisfy this request

(no)

(yes)

Queue this
RECEIVE request

Reassemble queued incoming
segments into the RCV Buffer

Signal User
(Data ready in RCV Buffer)

Number of

SET (RTO, REXMT)

Segment (
From Rexmt Queue

)

REXMT
TIMEOUT

CalcRTO (RTO)

(18)

 23

Process TCP

FIN-WAIT-1

CLOSE
Call

Return Error
(Connection Closing)

ABORT
Call

CLOSED

Delete TCB

Segment (
SEQ=SND.NXT,
CTL=RST)

Return Error
(Connection reset)

(yes)

(no)

Any queued SENDs or
RECEIVEs?

SEGMENT
ARRIVE

Check Segment SEQ
(SEG.SEQ, SEG.LEN,
RCV.NXT, RCV.WND)

SEG.RST is on

(yes)

(no)

[Not-acceptable]

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

Signal User
(Connection Reset)

(yes)

(yes)

Delete TCB

CLOSED

(no)

Any
queued SENDs or

RECEIVEs?

Return Error
(Connection Reset)

SEG.RST is on

[Acceptable]

FW1

(no)

(19)

 24

Process TCP

FW1

SEG.SYN is on

Segment (
SEQ=SND.NXT,
CTL=RST)

Any
queued SENDs or

RECEIVEs?

Return Error
(Connection reset)

(yes)

(no)

Delete TCB

CLOSED

(yes)
 SEG.ACK is on

(no)

(yes)

(no)

(yes)

SND.UNA < SEG.ACK
�

 SND.NXT

(no)

Remove from the Rexmt
Queue any segments
which are thereby entirely
acknowledged by this ACK.

SND.WND := min (CWND,
SEG.WND)

SND.UNA := SEG.ACK

Release REXMT Timer

Window Update
(dACK, CWND,
SSthresh, SEG.LEN)

FW2

Ignore duplicate/invalid
ACKs. If a segment was
lost we let it timeout and
retransmit normally.

(20)

 25

Process TCP
 FW2

(yes)

(no)
 SEG.SEQ = RCV.NXT

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

This is the lost segment!
Move its data and all data
in the OO RCV Buffer to
the normal RCV Buffer—all
octets should be in
consecutive order.

(yes)

(no)

OO RCV Buffer empty?

Copy segment's data to
the RCV Buffer

Clear the OO RCV Buffer

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

Signal User (
Data ready in RCV
Buffer)

Add received data to the
temporary out of order receive
buffer: OO RCV Buffer.

RCV.WND := RECV.WND +
SEG.LEN

RCV.NXT := HSEG.SEQ +
HSEG.LEN

HSEG is the segment with
the highest sequence
number received thus far.

RCV.NXT := SEG.SEQ +
SEG.LEN

TIME-WAIT

(yes)

(no)

SEG.FIN is on?

(no)

(yes)

SEG.ACK
acknowledges our

FIN?

FIN-WAIT-2

CLOSING

SEG.FIN is on?

(no)

(yes)

Turn off all timers

SET (TWtimeout,
TIMEWAIT)

FIN bit Processing
(SND.NXT, RCV.NXT,
SEG.SEQ)

FIN bit Processing
(SND.NXT, RCV.NXT,
SEG.SEQ)

(21)

 26

Process TCP

FIN-WAIT-2

OPEN
Call

Return Error
(Connection already
exists)

SEND
Call

Return Error
(Connection Closing)

RECEIVE
Call

queued received segments are
sufficient to satisfy this request

(no)

(yes)

Queue this
RECEIVE request

Reassemble queued incoming
segments into the RCV Buffer

Signal User
(Data ready in RCV Buffer)

Number of

(22)

 27

Process TCP

FIN-WAIT-2

CLOSE
Call

Return Error
(Connection Closing)

ABORT
Call

CLOSED

Delete TCB

Segment (
SEQ=SND.NXT,
CTL=RST)

Return Error
(Connection reset)

(yes)

(no)

Any queued SENDs or
RECEIVEs?

SEGMENT
ARRIVE

Check Segment SEQ
(SEG.SEQ, SEG.LEN,
RCV.NXT, RCV.WND)

SEG.RST is on

(yes)

(no)

[Not-acceptable]

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

Signal User
(Connection Reset)

(yes)

(yes)

Delete TCB

CLOSED

(no)

Any
queued SENDs or

RECEIVEs?

Return Error
(Connection Reset)

SEG.RST is on

[Acceptable]

FWT1

(no)

(23)

 28

Process TCP

FWT1

SEG.SYN is on

Segment (
SEQ=SND.NXT,
CTL=RST)

Any
queued SENDs or

RECEIVEs?

Return Error
(Connection reset)

(yes)

(no)

Delete TCB

CLOSED

(yes)
 SEG.ACK is on

(no)

(yes)

(no)

(yes)

SND.UNA < SEG.ACK
�

 SND.NXT

(no)

Remove from the Rexmt
Queue any segments
which are thereby entirely
acknowledged by this ACK.

SND.WND := min (CWND,
SEG.WND)

SND.UNA := SEG.ACK

Release REXMT Timer

Window Update
(dACK, CWND,
SSthresh, SEG.LEN)

FWT2

Ignore duplicate/invalid
ACKs. If a segment was
lost we let it timeout and
retransmit normally.

Rexmt Queue is
empty?

Return
(OK to CLOSE call)

(yes)

(no)

(24)

 29

Process TCP
 FWT2

(yes)

(no)
 SEG.SEQ = RCV.NXT

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

This is the lost segment!
Move its data and all data
in the OO RCV Buffer to
the normal RCV Buffer—all
octets should be in
consecutive order.

(yes)

(no)

OO RCV Buffer empty?

Copy segment's data to
the RCV Buffer

Clear the OO RCV Buffer

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

Signal User (
Data ready in RCV
Buffer)

Add received data to the
temporary out of order receive
buffer: OO RCV Buffer.

RCV.WND := RECV.WND +
SEG.LEN

RCV.NXT := HSEG.SEQ +
HSEG.LEN

HSEG is the segment with
the highest sequence
number received thus far.

RCV.NXT := SEG.SEQ +
SEG.LEN

TIME-WAIT

(no)
 SEG.FIN is on?

(yes)

Turn off all timers

SET (2MSL,
TIMEWAIT)

FIN bit Processing
(SND.NXT, RCV.NXT,
SEG.SEQ)

(25)

 30

Process TCP

CLOSING

OPEN
Call

Return Error
(Connection already
exists)

SEND
Call

Return Error
(Connection Closing)

RECEIVE
Call

Return Error
(Connection Closing)

CLOSE
Call

Return Error
(Connection Closing)

ABORT
Call

Return
(OK; Closing)

CLOSED

Delete TCB

SET (RTO, REXMT)

Segment (
From Rexmt Queue

)

REXMT
TIMEOUT

CalcRTO (RTO)

(26)

 31

Process TCP

CLOSING

SEGMENT
ARRIVE

Check Segment SEQ
(SEG.SEQ, SEG.LEN,
RCV.NXT, RCV.WND)

SEG.RST is on

(yes)

(no)

[Not-acceptable]

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

SEG.RST is on

(yes)

Delete TCB

CLOSED

[Acceptable]

(no)

SEG.SYN is on

Segment (
SEQ=SND.NXT,
CTL=RST)

Any
queued SENDs or

RECEIVEs?

Return Error
(Connection reset)

(yes)

(no)

Delete TCB

CLOSED

(yes)
 SEG.ACK is on

 (no)

(yes)

(no)

(yes)

SND.UNA < SEG.ACK
�

 SND.NXT

(no)

Our FIN has been
ACKed?

TIME-WAIT

(yes)

(no)

Turn off all timers

SET (2MSL,
TIMEWAIT)

(27)

 32

Process TCP

TIME-WAIT

OPEN
Call

Return Error
(Connection already
exists)

SEND
Call

Return Error
(Connection Closing)

RECEIVE
Call

Return Error
(Connection Closing)

CLOSE
Call

Return Error
(Connection Closing)

ABORT
Call

Return
(OK; Closing)

CLOSED

Delete TCB

(28)

 33

Process TCP

TIME-WAIT

SEGMENT
ARRIVE

Check Segment SEQ
(SEG.SEQ, SEG.LEN,
RCV.NXT, RCV.WND)

SEG.RST is on

(yes)

(no)

[Not-acceptable]

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

SEG.RST is on

(yes)

Delete TCB

CLOSED

[Acceptable]

(no)

SEG.SYN is on

Segment (
SEQ=SND.NXT,
CTL=RST)

Any
queued SENDs or

RECEIVEs?

Return Error
(Connection reset)

(yes)

(no)

Delete TCB

CLOSED

(yes)
 SEG.ACK is on

(no)

(yes)

(no)

SND.UNA < SEG.ACK
�

 SND.NXT

(no)

(no)

SEG.FIN is on?

(yes)

Turn off all timers

SET (2MSL,
TIMEWAIT)

FIN bit Processing
(SND.NXT, RCV.NXT,
SEG.SEQ)

(yes)

TIMEWAIT
TIMEOUT

Delete TCB

CLOSED

(29)

 34

Process TCP

CLOSE-WAIT

OPEN
Call

Return Error
(Connection already
exists)

SEND
Call

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

SND.NXT < (SND.UNA+SND.WND)

CalcRTO (RTO)

SET (RTO, REXMT)

SND.NXT := SND.NXT +
SEG.LEN

(no)

(yes)

Queue data in the Send Buffer

Create a new segment from
the data in the Send Buffer

Send Buffer has
sufficient data to satisfy

a new segment?

(no)

Wait until enough data
has been accumulated in
the buffer before sending
a new segment.

Add data just sent to the
Rexmt Queue

(yes)

SET (RTO, REXMT)

Segment (
From Rexmt Queue

)

REXMT
TIMEOUT

CalcRTO (RTO)

(30)

 35

Process TCP

CLOSE-WAIT

RECEIVE
Call

Any received data waiting to be
delivered to user?

(no)

(yes)

Return Error
(Connection Closing)

Reassemble remaining queued
data into the RCV Buffer

Signal User
(Data ready in RCV Buffer)

CLOSE
Call

(yes)

Any
queued SENDs?

Queue this CLOSE
request until all queued
SENDs have been
segmentized and sent.

Segment (
SEQ=SND.NXT,
CTL=FIN)

LAST-ACK

(no)

ABORT
Call

CLOSED

Delete TCB

Segment (
SEQ=SND.NXT,
CTL=RST)

Return Error
(Connection reset)

(yes)

(no)

Any queued SENDs or
RECEIVEs?

(31)

 36

Process TCP

CLOSE-WAIT

SEGMENT
ARRIVE

Check Segment SEQ
(SEG.SEQ, SEG.LEN,
RCV.NXT, RCV.WND)

SEG.RST is on

(yes)

(no)

[Not-acceptable]

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

Signal User
(Connection Reset)

(yes)

(yes)

Delete TCB

CLOSED

(no)

Any
queued SENDs or

RECEIVEs?

Return
(Connection Reset)

SEG.RST is on

[Acceptable]

CW1

(no)

SEG.SYN is on

Segment (
SEQ=SND.NXT,
CTL=RST)

Any
queued SENDs or

RECEIVEs?

Return Error
(Connection reset)

(yes)

(no)

Delete TCB

CLOSED

(yes)

(no)

(32)

 37

Process TCP

CW1

SEG.ACK is on

(no)

(yes)

SND.UNA < SEG.ACK
�

 SND.NXT

Remove from the Rexmt
Queue any segments
which are thereby entirely
acknowledged by this ACK.

SND.UNA := SEG.ACK

ExpBoff := 1

SND.WND := min (CWND,
SEG.WND)

(no)

(yes)

Release REXMT Timer

Window Update
(dACK, CWND,
SSthresh, SEG.LEN)

Drop duplicate/invalid
ACKs.
If a segment was lost
we let it timeout and
retransmit normally.

(yes)

(no)

SEG.FIN is on?

FIN bit Processing
(SND.NXT, RCV.NXT,
SEG.SEQ)

(33)

 38

Process TCP

LAST-ACK

OPEN
Call

Return Error
(Connection already
exists)

SEND
Call

Return Error
(Connection Closing)

RECEIVE
Call

Return Error
(Connection Closing)

CLOSE
Call

Return Error
(Connection Closing)

ABORT
Call

Return
(OK; Closing)

CLOSED

Delete TCB

SET (RTO, REXMT)

Segment (
From Rexmt Queue

)

REXMT
TIMEOUT

CalcRTO (RTO)

(34)

 39

Process TCP

LAST-ACK

SEGMENT
ARRIVE

Check Segment SEQ
(SEG.SEQ, SEG.LEN,
RCV.NXT, RCV.WND)

SEG.RST is on

(yes)

(no)

[Not-acceptable]

Segment (
SEQ=SND.NXT,
ACK=RCV.NXT,
CTL=ACK)

SEG.RST is on

(yes)

Delete TCB

CLOSED

[Acceptable]

(no)

SEG.SYN is on

Segment (
SEQ=SND.NXT,
CTL=RST)

Any
queued SENDs or

RECEIVEs?

Return Error
(Connection reset)

(yes)

(no)

Delete TCB

CLOSED

(yes)

(no)

SEG.ACK is on
 (no)

(yes)

(yes)

SND.UNA < SEG.ACK
�

 SND.NXT

(no)

Our FIN has been
ACKed?

(yes)

(no)

Delete TCB

CLOSED

(35)

 40

Process TCP

ANY STATE

USER-TIME
TIMEOUT

Signal User
(Error: Connection
aborted due to user
timeout)

CLOSED

Flush all Queues

Any outstanding
calls?

(no)

(yes)

Delete TCB

(36)

 41

macrodefinition Check Segment SEQ

fpar SEG.SEQ, SEG.LEN,

RCV.NXT, RCV.WND

(yes)

(no)

RCV.WND = 0

(yes)

SEG.LEN = 0

(yes)

SEG.SEQ = RCV.NXT

(yes)

(no)

[Acceptable]

[Not-acceptable]

SEG.LEN = 0

(yes)

(no)

(yes)

(no)

(RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND)

 (RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND)

OR (RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND)

(no)

(no)

(37)

 42

macrodefinition FIN bit Processing

fpar SND.NXT, RCV.NXT, SEG.SEQ;

Segment (
SEQ=SNDNXT,
ACK=RCVNXT
CTL=ACK)

Signal User
(Connection closing)

Any
queued RECEIVEs?

Return Error
(Connection closing)

(yes)

(no)

Return
(Any segment data not
yet delivered to user)

RCV.NXT := SEG.SEQ+1

(38)

 43

macrodefinition Window Update

fpar dACK, CWND, SSthresh,

SEGLEN

CWND
�

 SSthresh

CWND := CWND × 2

CWND := CWND +
SEGLEN

(yes)

(no)

dACK > 0

(yes)

(no)

CWND := SSthresh

(39)

 44

3.4. Variable Classifications
We have also classified variables along every transition from any state to every other state as follows:

1- Conditional variables: those that were used inside decision symbols along the transition,
2- Read-from Variable: those that appeared on the right-hand-side of an assignment along the transition, and
3- Write-to Variables: are those that appeared on the left-hand-side of an assignment along the transition.

The three types are shown in tables 1, 2, and 3 respectively.

 45

Table 1. Conditional variables
 CLOSED LISTEN SYN-

RCVD
SYN-
SENT

ESTAB FIN-
WAIT1

FIN-
WAIT2

CLOSING TIME-
WAIT

CLOSE-
WAIT

LAST-
ACK

CLOSED UCallsQ UCallsQ
RCV.WND
RCV.NXT
PrevState

[SEG]

UCallsQ
SND.UNA
SND.NXT

ISS
[SEG]

UCallsQ
RCV.NXT
RCV.WND

[SEG]

UCallsQ
RCV.NXT
RCV.WND

[SEG]

UCallsQ
RCV.NXT
RCV.WND

[SEG]

UCallsQ
RCV.NXT
RCV.WND

[SEG]

UCallsQ
RCV.NXT
RCV.WND

[SEG]

UCallsQ
RCV.NXT
RCV.WND

[SEG]

UCallsQ
RCV.NXT
RCV.WND
SND.UNA
SND.NXT

[SEG]

LISTEN RCV.WND
RCV.NXT
PrevState

[SEG]

SYN-RCVD
[SEG]

[SEG]

SYN-SENT

ESTAB RCV.WND
RCV.NXT
SND.UNA
SND.NXT

[SEG]

ISS
SND.NXT
SND.UNA

FIN-WAIT1 UCallsQ UCallsQ

FIN-WAIT2 ORBuff
SND.UNA
SND.NXT
RCV.NXT
RCV.WND

[SEG]

CLOSING ORBuff
SND.UNA
SND.NXT
RCV.NXT
RCV.WND

[SEG]

TIME-WAIT ORBuff
SND.UNA
SND.NXT
RCV.NXT
RCV.WND

[SEG]

ORBuff
RexQ

SND.UNA
SND.NXT
RCV.NXT
RCV.WND

[SEG]

UCallsQ
SND.NXT
SND.UNA
RCV.NXT
RCV.WND

[SEG]

CLOSE-
WAIT

 RCV.WND
RCV.NXT
SND.UNA
SND.NXT

[SEG]

 SND.NXT
SND.UNA
RCV.NXT
RCV.WND

ORBuff
[SEG]

LAST-ACK UCallsQ

 46

Table 2. Read-from Variables
 CLOSED LISTEN SYN-

RCVD
SYN-
SENT

ESTAB FIN-
WAIT1

FIN-
WAIT2

CLOSING TIME-
WAIT

CLOSE-
WAIT

LAST-
ACK

CLOSED UCallsQ UCallsQ
RexQ

SND.NXT
 [SEG]

UCallsQ

UCallsQ
SND.NXT

[SEG]

UCallsQ
SND.NXT

[SEG]

UCallsQ
SND.NXT

[SEG]

UCallsQ
SND.NXT

[SEG]

UCallsQ
SND.NXT

[SEG]

UCallsQ
SND.NXT

[SEG]

UCallsQ
SND.NXT

[SEG]

LISTEN

SYN-RCVD RCV.NXT
ISS

[SEG]

 ISS
RCV.NXT

RexQ
[SEG]

SYN-SENT ISS
[SEG]

ISS
[SEG]

ESTAB [SEG] SND.NXT
RCV.NXT

RexQ
[SEG]

FIN-WAIT1 SND.NXT

FIN-WAIT2 ORBuff
UCallsQ

SND.NXT
RCV.NXT
RCV.WND

CWND
SSthresh

[SEG]

CLOSING ORBuff
UCallsQ

SND.NXT
RCV.NXT
RCV.WND

CWND
SSthresh

[SEG]

TIME-WAIT ORBuff
UCallsQ

SND.NXT
RCV.NXT
RCV.WND

CWND
SSthresh

[SEG]

ORBuff
UCallsQ

SND.NXT
RCV.NXT
RCV.WND

CWND
SSthresh

[SEG

CLOSE-
WAIT

 UCallsQ
SND.NXT
RCV.NXT

[SEG]

 UCallsQ
SSthresh

dACK
SND.NXT
RCV.NXT
RCV.WND

[SEG]

LAST-ACK UCallsQ
SND.NXT

[SEG]

 47

Table 3. Write-to Variables
 CLOSED LISTEN SYN-

RCVD
SYN-
SENT

ESTAB FIN-
WAIT1

FIN-
WAIT2

CLOSING TIME-
WAIT

CLOSE-
WAIT

LAST-
ACK

CLOSED TCB TCB TCB TCB TCB TCB TCB TCB TCB
[SEG]

TCB
[SEG]

LISTEN TCB

SYN-RCVD RCV.NXT
IRS
ISS

SND.NXT
SND.UNA

[SEG]

 RCV.NXT
IRS

[SEG]

SYN-SENT ISS
SND.UNA
SND.NXT

TCB
[SEG]

ISS
SND.UNA
SND.NXT

[SEG]
TCB

ESTAB RexQ
RCV.NXT

IRS
SND.UNA

[SEG]

FIN-WAIT1

FIN-WAIT2 RexQ
SND.WND
SND.UNA

CWND

CLOSING RexQ
SND.WND
SND.UNA

CWND
ORBuff
RBuff

RCV.NXT
[SEG]

TIME-WAIT RexQ
SND.WND
SND.UNA

CWND
RCV.NXT

[SEG]

ORBuff
RBuff

SND.WND
SND.UNA
RCV.WND
RCV.NXT

[SEG]

CLOSE-WAIT ORBuff
RCV.WND
RCV.NXT

CWND
dACK
[SEG]

LAST-ACK [SEG]

 48

4. TCP versions
While in this report we have modeled the congestion control mechanism of TCP Reno, more recent versions like
TCP Vegas [Bra95] can also be modeled simply by replacing the bandwidth estimation scheme. In this section we
briefly discuss the bandwidth estimation scheme of both TCP Reno and TCP Vegas and then we show a quick recipe
to convert our Reno model to a Vegas one. A thorough comparison between TCP Reno and Vegas can be found in
[Mo99].

4.1. TCP Reno
TCP Reno induces packet losses to estimate the available bandwidth in the network. While there are no packet
losses, TCP Reno continues to increase its window size by one during each round trip time. When it experiences a
packet loss, it reduces its window size to one half of the current window size. This is called AIMD (Additive
Increase and Multiplicative Decrease). The congestion avoidance mechanism adopted by TCP Reno can cause
periodic oscillation in the window size due to the constant update of the window size, which leads to an oscillation
in the round trip delay of the packets.
The rate at which each connection updates its window size depends on the round trip delay of the connection.
Hence, the connections with shorter delays can update their window sizes faster than other connections with longer
delays, and thereby steal an unfair share of the bandwidth. As a result, it has been shown that TCP Reno exhibits an
undesirable bias against the connections with longer delays [Flo91].

4.2. TCP Vegas
TCP Vegas adopts a different bandwidth estimation scheme. It uses the difference between the Expected and Actual
flow rates to estimate the available bandwidth in the network. When the network is not congested, the actual flow
rate will be close to the expected flow rate. Otherwise, the actual flow rate will be smaller than the expected flow
rate. Using this difference in flow rates, TCP Vegas estimates the congestion level in the network and updates the
window size accordingly. Note that this difference in the flow rates can be easily translated into the difference
between the window size and the number of acknowledged packets during the round trip time, using the equation:

BaseRTTActualExpectedDiff ×−=)(

Where Expected is the expected rate, Actual is the actual rate, and BaseRTT is the minimum round trip time. The
algorithm can be outlined as follows:

1. First, the source computes the expected flow rate
BaseRTT

CrWND
Expected = , where CrWND is the current

window size and BaseRTT is the minimum round trip time.

2. Second, the source estimates the actual flow rate by using the actual round trip time according

to
AcRTT

CrWND
Actual = , where AcRTT is the actual round trip time of a packet.

3. Using the expected and actual flow rates, the source computes the estimated backlog in the queue
using BaseRTTActualExpectedDiff ×−=)(.

4. Based on Diff, the source updates its window size as follows:

if Diff < �

if Diff >
�

 ��
��
�

−
+

=
CrWND

CrWND

CrWND

CrWND 1

1

otherwise

 49

Here we propose a quick recipe to upgrade the existing EFSM/SDL model from TCP Reno to TCP Vegas:

1. Remove all TCP Reno extensions from the model—i.e., return it back to the basic RFC 793 standard.
2. Introduce the following variables in the EFSM:

� Actual: actual flow rate
� Expected: expected flow rate
� BaseRTT: minimum roundtrip time
� AcRTT: Actual roundtrip time
� CrWND: current window size
� Diff: Estimated queue backlog

3. In any state, when a (SEGMENT ARRIVE) event that acknowledges new data occurs, apply the procedure
described above to update the current window size (CrWND).

5. Conclusion
In this document we presented an EFSM/SDL description of the original TCP standard in RFC 793 plus the
congestion control enhancements proposed in [Jac88, Jac90]. We made several simplifying assumptions to make the
model as concise and compact as possible and we also used macros and procedures to model repeated functionalities
and to hide irrelevant details. The structured and object-oriented features of the SDL notation allows extending
and/or modifying this model to describe advanced features or other TCP versions—we have shown one such case
based on TCP Vegas.

6. References
[All99] Allman M., Paxson V., and Stevens W., “TCP Congestion Control,” RFC 2581, April

1999.

[Bra95] Brakmo L.S., Peterson L.L., “TCP Vegas: end to end congestion avoidance on the global
Internet,” IEEE Journal on Selected Areas in Communications, 13(8):1465-80, October
1995.

[Byu01] Byun Y., Sanders B., and Keum C-S., "Design Patterns of Communicating Extended
Finite State Machines in SDL," 8th Conference on Pattern Languages of Programs
(PLoP'01), 2001.

[Ell97] Ellsberger J., Hogrefe D., and Sarma A., "SDL: Formal Object-Oriented Language For
Communicating Systems," Prentrice Hall, Harlow, England, 1997.

[Flo91] Floyd S. and Jacobson V., “Connection with multiple Congested Gateways in packet-
Switched Networks, Part1: One-way Traffic,” ACM Computer Communication Review,
21(5):30-47, August 1991.

[Jac88] Jacobson V., “Congestion Avoidance and Control,” Computer Communication Review,
vol. 18, no. 4, pp. 314-329, Aug. 1988.

[Jac90] Jacobson V., “Modified TCP Congestion Avoidance Algorithm,” end2end-interest
mailing list, April 1990.

[Mo99]

Mo J., La R., Anantharam V. and Walrand J., "Analysis and Comparison of TCP Reno
and Vegas," Proc. INFOCOM'99, Mar 1999.

[Pos81] Postel J., “Transmission Control Protocol,” RFC 793, September 1981.

[SDLfrm] SDL Forum Society. SDL specification (z.100 11/99). http://www.sdl-forum.org.

 50

[Ste94] Stevens W. R., “TCP/IP Illustrated, Volume 1: The Protocols,” Addison-Wesley, 1994.

[Zag05] Raid Zaghal, “ Interactive Protocols for extensible networking,” Ph.D. Dissertation, Kent
State University, August 2005.

