

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 1

COMPUTING MINIMAL SPANNING TREE WITH
THE ACTIVE PROGRAMMABLE HARNESS

NETWORK GROUP COMMUNICATION WARE

Javed I. Khan and Asrar U. Haque
Internetworking and Media Communications Research Laboratories

Department of Math & Computer Science, Kent State University
233 MSB, Kent, OH 44242

December 2002

Abstract The active harness we have developed is a scalable and versatile
means for deep probing of network local states. Harness makes a clear separation
between the “communication” from the “ information” part of the probing process.
The composition of the “ information” component is handled by means of network
embedded harness plug-ins. Harness supports a variety of group communication
and distributed data synthesis patterns among a large set of nodes. It has been
show to be capable of solving variety of messaging optimized efficient distributed
algorithms used in advanced routing including shortest path, optimum clientele
multicast stepping etc. In this report we illustrate how it can also solve another
important problem is advanced routing—the minimum spanning tree problem.
This report does not contain any performance simulation.

1.Introduction

1.1. Scalability
Scalability, in a large network, is often severely limited in point-to-point mode of
communication. For example, the requesting node is required to send individual SNMP
messages to all intermediate nodes for measurement of path statistics causing
redundant flow of information inside the network. This increases the overhead and
hence severely reduces the transparency of the measurement process. With only a
point-to-point communication means, dissemination/aggregation of information creates
excessive traffic on the network severely limiting the scalability. It appears that the
inability to extract any intelligence from the intermediate nodes by SNMP causes the
limitation. Hence, since there is no means for in network composition, all compositions
must be done at the end-points, only after polling all state information there.

1.2. Versatility
On the contrary, though the specific probing kits provide greater scalability but can
hardly be reused for other measurements. Nevertheless, the trend suggests that
versatility of information is becoming equally important. Specifically, what
measurement is useful depends on the optimization objective. For example, in a video
server scenario, whether the jitter or the hard delay is more important is dependent on
the specific video repair algorithm. In a different scenario, a server before sending data
may want to poll information about the speed of only the last link to the home user’s
computers. In some other circumstances the min/max of the path downstream delays
and jitters from various junction nodes can help in strategically placing jitter-absorbing

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 2

buffers in a multimedia streaming virtual private multicast network. Emerging tele-
interaction applications (such as tele-surgery, remote instrument control) will require
handle on the delay incurred at the video frame level, which is exactly not the same as
the packet delay. The trend suggests that as more advanced and complex net-centric
applications are being envisioned more versatile network state information would have
to be exchanged.

1.3. Harness Approach
Can scalability and versatility both be retained simultaneously? Apparently, there may
not be any efficient answer in an end-to-end paradigm. In the general case, a network
can choke with polynomial messaging at the end-points. However, the recent advent of
Active Network technology seems to offer an innovative way out from this dichotomy
[13,14,8]. Active network allows programmable modules to be embedded inside
network junctions. In this research we are exploring an experimental dynamic
mechanism for state information polling and propagation inside network with similar
embedded information synthesizers, which seems to be both scalable and versatile. The
approach first makes a clear separation between the “communication” from the
“ information” of the state exchange and propagation process. Communication is
handled by the component called “harness”. Harness propagates all information via
coordinated messaging. On the other hand the “ information” component of the process
is controlled by a set of soft programmable plug-ins. These plug-ins decide the content
of the messages propagated by the harness. In a recent work [16] we have
demonstrated a tree-harness system which can work on a network with tree
communication topology.

 In this report we present a powerful generalization of the harness that now can operate
over a general graph network. The system is capable of solving various graph problems
such as shortest path, max-flow etc. based on customizable criteria (such as bandwidth,
delay, jitter, power usage etc.). The report explains the operation of the harness via an
important network algorithm-- finding the minimal spanning tree (MST). Compared to
many other problems, solution to MST is not obvious in Harness paradigm. In this
report, we therefore show a harness algorithm MST that creates a scalable and
customizable solution by exploiting its power of concurrent network computation and
node level aggregation.

1.4. Applications of MST in Networking
Interestingly MST is finding many applications in networking. In various custom forms
its use has been applied quite prominently in recent networking research. Some routing
algorithms [34,35,36,37] in mobile wireless networks have used shortest-path routing
where the number of hops is the path length. However, more recently researchers are
suggesting that the optimum routing in wireless and mobile networking with minimum
energy constraint, is a MST problem rather than shortest path [27,28,29,30,31,32,33].
Chang and Tassiullas [38] have shown that MST can be used (in inverse form) to
distribute wireless traffic among various paths so that batteries of the nodes drain-out
in a uniform way. Optimum mirroring based on network load reduction in web caching
is also an MST problem.

MST also applies in data aggregation and distribution. Several researchers in sensor
networking area have recently investigated means for scalable data aggregation [39].

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 3

The researchers used various approximations of MST. In [40] aggregation has been
done based on Center at Nearest Source (CNS), Shortest Paths Tree (SPT), or Greedy
Incremental Tree (GIT). PEGASIS [41] creates a chain path between network of
sensors to gather and fuse data as data passes over the chain. Then fused data is sent to
base station by one of the randomly chosen sensors located in the chain. Concast [52]
has been proposed to merge collected feedback in multicast application. Wolf and Choi
[53] proposed an aggregation algorithm similar to concast with the provision of
detecting packet loss and avoidance of indefinite waiting.

MST is also central to DDBMA (Dynamic Delay Bounded Multicasting Algorithm),
which is concerned about delay in multicast tree. Zhou and Hac [43] proposed a
heuristic algorithm for constructing minimum-cost multicast trees with delay
constraints. Other heuristics have been developed by [44,45,46]. In congestion control
topology information has been used in multicast tree [47]. In Topology Aware
Grouping (TAG) [48] the shortest path information is used to build efficient overlay
networks among multicast group members.

2.Harness Architecture
The harness is in charge for initiating, propagating and responding to a series of well-
coordinated messages between the nodes in a network. The harness once installed in
network nodes, can act in three roles-- session initiator, state synthesizer, and
terminals. The initiator acts as the communication agent in the network layer for the
application that actually requires the information. The synthesizer propagates the state
requests and processes the returning states from the terminals.

The harness controls the communication pattern and thus deals with the efficiency of
messaging. Harness system accepts a set of plug-ins, which determines the content of
these messages, and how they are propagated and aggregated at the junction points.

2.1. Messaging
The harness system has been designed to operate with a novel request-reply-update
messaging scheme. It has three types of messages request, reply and update. A request
message may contain fields indicating what data is needed, information dictating how
far down the network the probing session should propagate either by specifying
probing depth or by explicitly listing terminal nodes, and any information needed by
the receiver to compute required data, e.g. to compute jitter a receiver needs to know
the time stamp of sending successive data. In addition to this, for a graph structured
network we need to uniquely identify a session by the combination of initiators id and
some unique session id. Since in a graph structure a synthesizer might receive request
for multiple sessions from adjacent nodes, the synthesizer can use the initiators id and
session id to distinguish multiple sessions. The session initiator decides how often a
request is generated in case of gathering property of a topology which changes over
time. The request messages are sent to the terminals if they are immediately connected,
or to synthesizers for further downstream propagation. A synthesizer upon receiving a
request, propagates the query by generating a new request message to the down-stream
nodes. However, at the same time it might also generate an immediate reply for the
requestor. The replies from synthesizers may contain current local state and/or past
remote states. The reply might also be used to acknowledge receipt of a request

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 4

indicating that the receiver will generate request further down-stream. The terminal
nodes send replies to their respective requestors. The terminal reply contains locally
retrieved current states. The terminals or update initiators initiates return trip of
information by generating update messages. In the return trip of information, the
synthesizer nodes aggregate the information and at each stage generate update
messages for their requestors. Once a node receives all or specific number of update
messages from its immediate down-stream nodes or on timeout, it updates the network
local state variables and generates a new update message. The update message contains
a synthesized summary of information calculated from all its immediate downstream
nodes.

This three-part request-reply-update communication model, if needed, allows the
information to be collected without working in lockstep. Even if a downstream node is
delayed or silent, it does not hold the entire system; the estimation process can proceed
for remaining nodes. The update phase is further equipped with optional and
configurable timers to avoid update lockup. In essence, the request-reply phase allows
collection of local immediate states. The reply mechanism allows immediate probing
into current local states and past synthesized remote states, while the update message
retrieves latest remote states.

2.2. State Composition
Harness system accepts a set of six-plug-ins which are called request generator, reply
generator, update generator, request aggregator, reply aggregator, and update
aggregator. These modules together determine the content of these messages, and how
they are aggregated at the junction points. They work via a virtual slate. A copy of
which is maintained in each of the nodes. The slate works as the local abstract data
structures. The slate is programmable and is defined at the session initiation phase. The
request generator specifies the request message describing the fields it wants from the
slate of its down-stream node. At individual nodes the model supports MIB-II and thus
acts as a superset of SNMP. The terminal nodes can read/copy MIB variables (or their
processed combination) existing in the local slate into variables marked for reply. The
harness then invokes the reply messages with the designated slate variables. Reply
aggregator (or update aggregators) in a similar fashion is invoked each time a reply
(or update) is received by the harness. They perform domain specific processing of the

Fig. 1 Components of Active Harness

 C

 D E

L M

 H

O P

 I

Q R

Update

Reply

+ : Request Generator
x : Reply Generator
: Reply Aggregator

S
 + #
 ^ *

Request

 A
 +x #
 * ^

 +x #
 * ^

 + x
* # ^ + x

* # ^
 + x
* # ^

 + x
* # ^

J K
 x* x* x* x* x* x* x* x*

* : Update Generator
^ : Update Aggregator

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 5

reply message fields and similarly update their own slate variables. The update
generator is invoked when a special trigger variable becomes true. The trigger variable

is a set of conditions such as all, any, or a specified number of down-stream nodes have
requested/updated/replied, or a timer fires. The update generator sends the slate
variables synthesized by the update aggregators to the upstream node. Fig. 1 describes
the architecture of the proposed harness system. It shows the typical locations of the
plug-in modules and the direction of the messages. In fig. 2, the event diagram of the
harness is shown.

At the heart of the composition ability is the transfer functions of the intermediate
synthesizers. The request and update phase can be represented by equations:

)(),,),((,,
1

,, t
t

kj
t

j
t

j
t

ji
t

j
t SFQandSMQS

��
=ΕΦ= −

−
− ….(1)

)(),,),((_,,
1

,, t
t

ji
t

j
t

j
t

kj
t

j
t SEPandSMPFS

��
=Ψ= −

− ….(2)

Here, as shown in fig
3, St

j is the local slate
state at event time t at

node j, E
�

is the request
receiving filter (RRF),
M is the local network
state (such as MIB

variable), F
�

 is the
request forwarding
filter (RFF). Qt

i,j,- is the
arrived request from
parent i, to node j and
Qt

-,j,k is the propagated
requests to children k.

 Request Generator
Reply Generator
Reply Aggregator

Update Generator
Update Aggregator

Session
Initiator

Synthesizer Last
Synthesizer

Terminal

Fig. 2 Event Diagram for Harness

R
R
F

Q
ji

t

−,,

M
i

t

S
j

t 1−

Q
kj

t

,,−

S
j

t

R
F
F

�

U
R
F P

ji

t

−,,

S
j

t 1−

P
kj

t

,,−

S
j

t

U
F
F

�

M
i

t

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 6

E
�

is the update forwarding filter (UFF), F
�

 is the update receiving filter (URF). Pt
-,j,k

is the arrived update from child k,

and Pt
i,j,- is the propagated update to parent i. While the filters determined the

information propagation rules, composition functions ()Φ and ()Ψ together
determine the message content. While, in principle each of these components for each
of the individual harness sites can be programmed differently, however the associated
management will be intractable. In this harness we divide the network nodes into
subsets based on their role in the topology. Nodes in the topological subsets then
inherit uniform programmed behavior. Thus, we need only six distinct programmed
modules (plug-ins) to be supplied by the harness programmer.

3.Harness Execution Model
The harness operates through 9 states. Fig 4 shows the state transition diagram. The
oval shaped boxes describe activities and the square boxes indicate plug-in modules
used for those activities. The dotted path is taken only by a session initiator. A session
initiator has states 1-4-5-6-5-7-8-1 if reply and update is expected. An update initiator
since waits for U=0 updates, has states 1-2-3-5-3-7-9-1. Synthesizers (if both reply and
update is expected) have states 1-2-4-3-5-2-5-6-5-7-8-7-9-1. As fig 4 suggests, other
combinations are possible depending on whether reply and/or update is expected or
not.

4.Example Probing: Minimal Spanning Tree
Problem Definition: G(V, E) is a connected, undirected graph where V is the set of
nodes and E is the set of edges and for each edge (u,v) ∈ E, � (u,v) is cost of edge (u,v).
We need to find an acyclic subset, T ⊆ E, that connects all the vertices and whose total
weight � (T) = is minimum [54].

�

∈Tu

vu
),(

),(
ν

ω

Fig. 3 Harness Components

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 7

We will map the three phases of the harness to find the minimal spanning tree of a
graph topology. The first phase is request generation phase. During the request
generation phase, reply phase takes place concurrently.

� A session initiator initiates a session of finding minimal spanning tree (MST) of a
network with graph topology. How deep the probing should take place, should be
determined by the session initiator. This can be done by identifying one or more
terminal nodes (which can be thought as the leaf node of the topology) during the
initiation of session. Another way of determining how deep probing should take
place is the depth (or level) from the session initiator. However, this might lead to
redundant flow of request messages across network. The session initiator sends
request messages to its adjacent synthesizers.

� A request message sent by session initiator includes its id (i.e. session initiators
id), id of the terminal node, i.e. the update initiator, and a unique session number.
Each session can be distinguished by a session number and id of the session
initiator.

� When a request message is received by a synthesizer from the session initiator it
becomes child of the session initiator. This synthesizer then propagates request
message to its adjacent synthesizers. The new request message consists of id of the
update initiator sent by session initiator, session initiator's id, session number and
its own id. This means that the new request message can be constructed from the

Fig, 4 State Transition Diagram of The Active Harness

Process Request
2

Idle Node
1

Gen Req
4

6

Process
Update

8

Wait for
Update

7

On
 R

ec
vin

g
a

Re
q

Req
Generator

Gen Update

8 Update
Generator Update

Aggregator

Process Reply

On Rep Rcvd

O
n

Re
cv

ing
Up

d

On U Upd
or T

imeout

Request
Aggregator

Reply
Aggregator

On R Req Or
Timeout

Wait for
Rep/Req

5

On Req Rcvd

On P Rep And/Or Q Req or

Timeout

9

Generate Rep
3 Rep

Generator

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 8

request message sent by the session initiator by changing sender and receivers' id
and appending it own id to keep track of the path of the request propagation.

� Once a request message is received from a synthesizer, say x, then the sender, x,
becomes the parent of the receiving synthesizer, say y, provided the receiver of the
request message , i.e. y, has not sent a request earlier to x. Then the receiving
synthesizer, y, propagates the request to its adjacent synthesizers, say z, from
which it did not receive a request yet and z is not in the path of request message.
On the other hand, if the receiver, y, before receiving the request message from x,
has sent a request message to x, then we need to resolve the ambiguity of both
being one another's parent and child. This can be resolved by following the
convention that the synthesizer whose id is higher becomes the parent of the other
synthesizer. This will insure that every adjacent synthesizer is either parent or a
child of any other adjacent synthesizer.

� The reply message can be used to resolve/acknowledge parent-child relationship.
There can be provisions so that a reply message contains previously computed
MST. This can be used in situations where the synthesizers are mobile or inactive
incase of energy sensitive nodes.

� As the request propagates down the links, the request messages will give the path
through which request messages propagated from the session initiator to a
synthesizer. During the request generation phase a synthesizer does not send a
request message to a synthesizer which is in the path of request propagation. This
can be used to avoid deadlock during update phase.

� The initiator designates a terminal which we will call update initiator. An update
initiator does not send any request to any adjacent synthesizers and hence does not
have any child. It initiates the update phase. However, there can be incidents
where a node receives request messages from its adjacent node and becomes a
child of all its adjacent synthesizer. Such a node, by definition, becomes update
initiator even though the session initiator has not specified that node as an update
initiator. We can prove that the algorithm of finding minimal spanning tree works
correctly even if we have more than one update initiator.

� An update initiator initiates the update phase upon receiving request messages
from its adjacent synthesizers. Update message generated by the update initiator
includes the cost of the link between it and its parent. Essentially this is the
minimal spanning tree of the sub-graph which consists of update initiator and its
respective parent.

� During the update phase all the parent synthesizers expect an update message from
each of their children. A synthesizer does not generate an update message until it
receives update messages from all its children. On receiving update messages
from its children a synthesizer finds the updated MST of the sub-graph which
consists of that synthesizer and all its children and their children down to the
update initiator. This can be found by merging the MST sent by its children in the
respective update messages and then removing any cycle that is created by the
merge operation. A cycle can be removed by eliminating the link that has
maximum cost among the links in the concerned cyclic path. Once the synthesizer
finds the MST of the graph below it, it chooses one of its parent synthesizers, say
m, whose cost is the minimum among all its parent synthesizers. An update

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 9

message is sent to that synthesizer, m, adding the cost of that synthesizer with the
newly computed MST.

� Other synthesizers which are not chosen are notified via the update message with a
null path.

� Gradually, update messages reach the session initiator and, it computes the MST
of the graph.

5.Proof of Correctness of Algorithm
Theorem: Given, G(V, E) is a connected, undirected graph where V is the set of nodes
and E is the set of edges and for each edge (u,v) ∈ E, � (u,v) is cost of edge (u,v).
Above Harness-MST algorithm gives a minimal spanning tree i.e. an acyclic subset,
T ⊆ E, that connects all the vertices and whose total weight � (T) is minimum.

Lemma 1: No edge is left out without considering it.

Proof: Since through each edge a request is propagated and since a node when sending
an update compares the cost of edge from which it receives a request, so all edges are
considered.

Lemma 2: No less costly edge is left out (i.e. holds minimal property.)
Proof (by contradiction): Given G =(V, E), V=
{u, v, z, y, x} and E={uv, vz, xy, yz, ux} and
T={ uv, vz, xy, yz} is the minimal spanning tree of
graph G. We need to show that there is an edge
uy with � (uv) <� (uy) or � (xy) <� (ux).

Now, there can be two scenarios, either u is the
child of y or y is child of u. If u is child of y then
while u generated an update message as per
algorithm u chooses the link which has minimum
cost hence weight of uv is less than weight of uy.
Similarly, we can show if y is child of u weight
of yz is less than uy. In both cases it’s a
contradiction. So there cannot be an edge uy
whose weight is less than uv or yz.

Lemma 3: It is a spanning tree.
Proof: Since at every node during update generation, existence of any cycle is checked
and eliminated if any, so at the end we get a tree.

Directly from lemma 1, 2, and 3, the theorem is proved.

6.Example:
In the following figures we show snapshots of finding minimal spanning tree. The
numbers next to a link is the cost associated with that link, e.g. cost of node connecting
nodes a and b is 4. Fig 6(a) shows the topology with cost of different links. Node a is
the session initiator and a designates g as the update initiator (terminal node). Fig 6(b)
shows the parent-child relationship between different adjacent nodes after all the

v

z

u x

y

Fig. 5

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 10

request messages have propagated down to
the update initiator. The direction from one
node to another shows the propagation of
request message and parent child relationship,
e.g. an edge from a� b. indicates propagation
of request from a to b and that b is a child of
a.
The update initiator, g, on receiving requests
from all its neighbors, initiates the update
phase sending update message to its parents
(requestors) f, d, e, and h. The update message
sent to f includes path gf and cost 11.
Similarly, update messages to h include path

gh and cost 12. Node f upon receiving update message it was expecting from its child,
i.e. from g, generates update message
augmenting fd to gf and sends it to d. Node d
on receiving updates from f and g, merges
the paths, i.e. the respective MST, received
from f and g which gives { gf, fd, gd} and
checks if there is a cycle. If there is a cycle,
it eliminates the edge with maximum
weight. In this case since there is a cycle (fig
6c), it eliminates the edge gf whose cost is
higher (i.e 11) than other two edges in the
cycle. Now, remaining edges, i.e. { fd, gd} is
the MST of the subgraph whose root is d.
Node d after eliminating cycles, finds the
edge db (6) from the edges connecting d to
its parent which has minimum weight, and adds that to rest of the MST. This gives { fd,
gd, db} and sends that to b. The other parent of d which is c is notified by sending
another update message with null path indicating c that dc was not chosen. This is

shown if fig 6(c). Similarly, e sends update
message to b with the path {gw, he, eb} . When
node b receives update messages from its
children d and e, it detects a cycle { gd, db, eb,
ge} and eliminates ge the edge with maximum
weight in the cycle giving the path { fd, gd, db,
he, eb} . After receiving update message from c
which has {cb} and merging it with that which
has been received from d, the MST of the
subgraph whose root is b becomes { fd, gd, db,
he, eb, cb} . Finally, a computes the overall
MST of the topology once it receives updates
from b and c which is { fd, gd, db, he, eb, cb,
ba} .

a
b c

e d

f h g

4 8
2

6
3 7

14

10 1 9 5

13

Fig 6c
11 12

Fig. 6a

a

b c

ed

f hg

4 8
2

6
3 7

14
10

1 9
11 12

5

13

a

b c

ed

f hg

4 8
2

6
3 7

14

10 1 9
11 12

5

13

Fig 6b

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 11

7.Messages and Modules

var MsgType : type HarnessVar, var SessionNo: type SessionID, var InitiatorID:
type NodeID, var UpdateInitiatorID: type NodeID, var RequestPath : type NodePtr

var MsgType : type HarnessVar, var SessionNo: type unsigned int, var InitiatorID:
type NodeID, var Ack: type Bool

var MsgType : type HarnessVar, var SessionNo: type SessionID, var InitiatorID:
type NodeID, var Path: type (var PathHead:type NodePtr + var TailNodePtr: type

NodePtr, var MaxLink: type NodePtr, var MaxLinkCost:unsigned int)

var LinkCost: array unsigned int, var PathMST: type tree

Fig. 7(d) Slate

var RequestRecvd: type array bool, var RequestSent: type array bool, var
UpdateRecvd: type array bool, var UpdateSent: type array bool, var ReplyReceived
: type aray bool, var ReplySent: type aray Bool, var ParentNodePtr: type NodePtr,
var ChildNodePtr: type NodePtr, var RequestRecvdFromNode: type NodePtr, var
RequestSentToNode: type NodePtr, var UpdateRecvdFromNode: type NodePtr,

var UpdateSentToNode: type NodePtr

Fig. 7(e) Harness Variables For a Node

Request Generator Module:
 For each adjacent node j
 if (j not in requestMsg.RequestPath OR j has not sent request)
 Set SessionNumber, InitiatorID, UpdateInitiatorID
 Path � append (requestMsg.RequestPath , parentNode)
 >> Send request message to j <<

Request Aggregator Module:
 For each adjacent node j
 if (r=1 request received)
 signal (activate Request Generator Module)

Fig. 7(a) Request Message

Fig. 7(b) Reply Message

Fig. 7(c) Update Message

Fig. 7(f) Request Generator Module

Fig. 7(g) Request Aggregator Module

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 12

8.Analytical Complexity
MST is one of the oldest known graph problems having an illustrious history. Textbook
algorithms run in O(E lg N) time, where N and E denote, respectively, the number of
vertices and edges in the graph. A distributed algorithm was presented in [49] that
construct the minimum-weight spanning tree in a connected undirected graph with
distinct edge weights. The total number of messages required for a graph of N nodes
and E edges is at most 5NlgN+2E. As we will show that the proposed harness

Reply Generator Module :
 if (request not sent to either to j OR to node in RequestPath)

 set replyMsg.Ack � True
 otherwise

 set replyMsg.Ack � False
 >> send reply message to j <<

Reply Aggregator Module:
 if (reply msg from j.ack = False)

 set ParentNodePtr (next) � j
 otherwise

 set ChildNodePtr (next) � j

Fig. 7(i) Reply Aggregator Module:

Update Generator Module:
 For each parent node j of current node i
 set MsgType, SessionNo, InitiatorID
 if (j.Linkcost = min)
 update message.Path � cons (j, Slate.PathMST)
 else
 update message.Path � NULL
 >> send update message to j <<

Fig. 7(j) Update Generator Module:

Update Aggregator Module:
 For update message from j
 Slate.PathMST � merge (Slate.PathMST, update message.Path)
 if (cycle in Slate.PathMST) then
 Slate.PathMST � remove (Slate.PathMST, maxLink
(Slate.PathMST)

Fig. 7(k) Update Aggregator Module:

Fig. 7(h) Reply Generator Module

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 13

algorithm will use much less number of messages, at most 3E. On average total number
of bits on all the messages will depend on number of bits used to identify nodes.
For a graph G = (E, V) maximum number of request and reply messages is same which
is 2|E|. The number of update message is |E| during update phase from update initiator
towards the session initiator.
During request generation, a request generator need has complexity O(db) in worst
case where d is the depth of that node and b is the average branching factor. It takes
O(b2), in worst case, in order to detect a cycle for an update generator. So for an update
phase if depth of update initiator is O(d) then it takes O (db2).
In classical solutions by Kruskals, Prims etc for the MST problem assume that the
graph topology in known and hence the complexity O(m lg n) is estimated only on the
basis of the computation of MST. Such centralized solution however ignores the cost of
data collection, which can be substantial O(nd) in a network environment with n nodes.
Our approach drastically reduces the amount of information propagated. This is
important in large scale Internet environment where communication is much significant
cost factor than the small computations involved.

Table-1 Link Traffic Impact
Type Byte Max

Msg
Msg/link Bytes/link

Request r=O(d) |E| 1 r=O(d)
Reply p= O(1) |E| 1 p= O(1)

Update u=O(d) |E| 1 u= O(d)

Table-2 Node Processing Impact
Node Request Reply Update

 Generator Aggregator Generator Aggregator Generator Aggregator

Initiator O(b) O(b) 0 O(b) 0 O(b2)
Synthesi
zer

O(bd) O(b) O(1) O(b) O(b) O(b2)

Terminal 0 O(b) O(1) 0 O(b) 0

Above we have provided estimates of the impact on the links and on the nodes due to
the harness operation respectively for one execution/propagation wave. Here, as
mentioned before, d and b stand for a maximum probing depth and average branching
factor of the context network respectively. The sizes of the Request, Reply, and Update
messages are of r = O(d), p = O(1), and u = O(d) bytes respectively and computational
impact in a synthesizer due to request generator, request aggregator, reply generator,
reply aggregator, update generator and update aggregator are rg = O(db), ra = O(b),
pg= O(1), pa = O(b), ug = O(b), and ua = O(b2) respectively. Table-1 shows the network
wide traffic, message per link and the byte density. The potential scalability of the
system is indicated by the message density per link which is 1. Table-2 shows the
computational impact on the network nodes due to the plug-ins. It can be noted here
that, a particular state-probing session may be launched with a subset of capabilities
(such as no reply, but update). The design objective is to provide the least impact
communication for the given application scenario. With the timeout feature we can

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 14

approximate MST of a graph in O(d) time which can be good enough for many
practical purposes.

9.Conclusions
The report presents the Harness system via an example of its use in solving MST. The
key to the system’s scalability and versatility are the embedded aggregators. Since
local state dependent aggregation is performed inside a network, it reduces
communication and thus enhances the system’s scalability. Aggregators also provide
the ability to compute network relative deep composite statistics, over the elementary
MIB-II variables, thus enhancing the versatility of its ability to collect network states.

The network implementation is non-trivial nevertheless can be realized at user space as
deamons. Embedded implementation can cut down some overhead and will be critical
for sub-second range probing cycles. Implementation on some form of active platform
[8,13,14] can further facilitate matters such as remote deployment, and seamless
secured execution of the plug-ins. The harness plug-ins require very limited form of
programmability compared to general active net paradigm. Also, the read-write
suggestions are through local slate variables only. These characteristics assuage many
of the security concerns. The proposed harness is perhaps one of those cases where
provisioning even very low-grade programmability can be highly rewarding. The
harness increases state visibility of network. In effect it facilitates high pay off smart
optimizations for numerous applications, which are not easily realizable today due to
the black box nature of current network. Interestingly, such a network layer utility is
not only crucial for building a new generation of network aware applications but it is
also vital for many of the current problems internet is grappling with. Interestingly
many of which are arguably artifacts of the opacity of current network design.
Currently, we are exploring its active network based simulation. The work is being
supported by the DARPA active network Research Grant F30602-99-1-0515.

10.References
1. Carter, Robert L., Mark E. Crovella. Measuring Bottleneck Link Speed in Packet-Switched Networks.

Performance Evaluation 27 & 28 (1996), 297-318.
2. Comer D. E., Internetworking with TCP/IP, Principles, Protocols, and Architectures, 4th Ed, Pretice Hall,

New Jersey, USA, ISBN- 0-13-018380-6, 2000

3. Dong, Yingfeng, Yiwei Thomas Hou, Zhi-Li Zhang, Tomohiko Taniguchi. A server-based non-intrusive
measurement Infrastructure for Enterprise Networks. Performance Evaluation (36)1, 1999, pg 233-247.

4. Downey Allen B., Using Pathchar to Estimate Internet Link Characteristics. http://ee.lbl.gov/nrg-
talks.html, April 1997.

5. Paul Francis , Sugih Jamin , Cheng Jin, Yixin Jin , Danny Raz , Yuval Shavitt , Lixia Zhang, IDMaps: a
global internet host distance estimation service. IEEE/ACM Transactions on Networking (TON) October
2001 Volume 9 Issue 5

6. Jacobson, V., Traceroute, [URL: ftp://ftp.ee.ibl.gov/traceroute.tar.Z,] 1989.

7. Jacobson, V, Pathchar- a tool to infer characteristics of Internet paths, [URL: http://ee.ibl.gov/nrg-
talks.html], April 1997.

8. Javed I. Khan, S. S. Yang, Medianet Active Switch Architecture, Technical Report: 2000-01-02, Kent State
University, [available at URL http://medianet.kent. edu/technicalreports.html, also mirrored at http://
bristi.facnet.mcs.kent.edu/medianet]

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 15

9. Matt Mathis, Jamshid Mahdavi. Diagnosing Internet Congestion with a Transport Layer Performance Tool.
Proceedings INET, 1996, Montreal Canada.

10. Paxson, V., Jamshid Mahdavi, Andrew Adams and Matt Mathis. An Architecture for Large-Scale Internet
Measurement. IEEE Communication Magazine, August 1998, 48-54.

11. Jeffrey Case, Rob Frye, Jon Saperia. SNMPv3 Survival Guide, October 1999 Published by John Wiley &
Sons

12. Schulzrinne, H., S. Casner, R. Frederick, and V. Jacobson. RTP: A Trasport Protocol for Real Time
Applications, RFC 1889, 1996.

13. Tennenhouse, D. L., J. Smith, D. Sincoskie, D. Wetherall & G. Minden.. A Survey of Active Network
Research. IEEE Communications Magazine, Vol. 35, No. 1, Jan 97, pp 80-86

14. Wetherall, Guttag, Tennenhouse. ANTS: A Tool kit for Building and Dynamically Deploying Network
Protocols. IEEE OPENARCH'98, San Francisco, April 1998. Available at:
http://www.tns.lcs.mit.edu/publications/openarch98.html

15. Javed I. Khan & S. S. Yang. Resource Adaptive Nomadic Transcoding on Active Network, Applied
Informatics. AI 2001, February 19-22, 2001, Insbruck, Austria, [available at URL
http://medianet.kent.edu/, also mirrored at http:// bristi.facnet.mcs.kent.edu/medianet]

16. Javed I. Khan & Asrar U. Haque. An Active Programmable Harness For Measurement of Composite
Network States. IEEE International Conference on Networking, ICN’ 2001, Colmer, France, June 2001,
pp628-638

17. D. Makofske and K. Almeroth, MHealth: A Real-Time Multicast Tree Visualization and Monitoring
Tool. Network and Operating System Support for Digital Audio and Video (NOSSDAV '99) , Basking
Ridge New Jersey, USA, June 1999

18. A. Swan and D. Bacher, rtpmon 1.0a7. University of California at Berkeley, January 1997. Available
from ftp://mmftp.cs.berkeley.edu/pub/rtpmon/

19. K. Almeroth, Multicast Group Membership Collection Tool (mlisten). Georgia Institute of Technology,
September 1996. Available from http://www.cc.gatech.edu/computing/Telecomm/mbone/

20. J. Robinson and J. Stewart, MultiMON 2.0 – Multicast Network Monitor, August 1998. Available from
http: // www.merci.crc.ca/ mbone/ MultiMON/.

21. D. Thaler, Mstat. Merit Network, Inc. and University of Michigan. http://www.merit.edu/net-
research/mbone/mstat.html

22. D. Thaler and A. Adams, Mrtree. Merit Network, Inc. and University of Michigan.
http://www.merit.edu/ net-research/ mbone/mrtree man.html

23. D. Thaler, Mview. Merit Network, Inc. and University of Michigan.
http://nic.merit.edu/_mbone/mviewdoc/Welcome.html.

24. K. Lai and M. Baker. Nettimer: A Tool for Measuring Bottleneck Link Bandwidth. In Proc. of USENIX
Symposium on Internet Technologies and Systems, March 2001.

25. Kamil Sara , Kevin C. Scalable techniques for discovering multicast tree topology. 11th International
workshop on Network and Operating Systems support for digital audio and video January 2001

26. Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble, King: Estimating Latency between
Arbitrary Internet End Hosts. To appear in the Proceedings of SIGCOM IMW 2002, Marseille, France,
November 2002.

27. Dennis J. Baker and Anthony Ephremides, The architectural organization of a mobile radio network via
a distributed algorithm, IEEE Transactions on Communications, vol. COM-29, no. 11, pp. 56–73, Jan.
1981.

28. Anthony Ephremides, Jeffrey E. Wieselthier, and Dennis J. Baker, A design concept for reliable mobile
radio networks with frequency hopping signaling, Proceedings of the IEEE, vol. 75, no. 1, pp. 56–73,
Jan. 1987.

29. Volkan Rodoplu and Teresa H. Meng, Minimum energy mobile wireless networks, in Proceedings of the
1998 IEEE International Conference on Communications, ICC’98, Atlanta, GA, June 1998, vol. 3, pp.
1633–1639.

30. Teresa H. Meng and Volkan Rodoplu, Distributed network protocols for wireless communication. In
Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, ISCAS’98, Monterey,
CA, June 1998, vol. 4, pp. 600–603.

31. S. Singh, M.Woo, and C.S. Raghavendra, Power-aware routing in mobile ad hoc networks, In
Proceedings of Fourth Annual ACM/IEEE International Conference on Mobile Computing and
Networking, Dallas, TX, Oct. 1998, pp. 181–190

32. Timothy Shepard, Decentralized channel management in scalable multihop spread spectrum packet

Technical Report 2003-01-02
Internetworking and Media Communications Research Laboratories
Department of Computer Science, Kent State University
http://medianet.kent.edu/technicalreports.html

 16

radio networks, Tech. Rep. MIT/LCS/TR-670, Massachusetts Institute of Technology Laboratory for
Computer Science, July 1995

33. M. Ettus, System capacity, latency, and power consumption in multihop routed SS-CDMA wireless
networks. In Proceedings of IEEE Radio and Wireless Conference (RAWCON) 98, Colorado Springs,
CO, Aug. 1998, pp. 55–58

34. C. Perkins and P. Bhagwat, Highly dynamic destination-sequenced distance vector routing (DSDV) for
mobile computers. In ACM SIGCOMM, Oct. 1994

35. S. Murthy and J.J. Garcia-Luna-Aceves, An efficient routing protocol for wireless networks. ACM
Mobile Networks and Applications Journal, Special Issue on Routing in Mobile Communication
Networks, 1996.

36. D. Johnson and D. Maltz, Dynamic source routing in ad hoc wireless networks. Mobile Computing,
1996.

37. Vincent D. Park and M. Scott Corson, A highly distributed routing algorithm for mobile wireless
networks. In Proc. IEEE INFOCOM’97, Kobe, Japan, 1997.

38. Jae-Hwan Chang and Leandros Tassiulas, Energy Conserving Routing in Wireless Ad-hoc Networks.
INFOCOM '2000, March 2000.

39. C. Intanangonwiwat, D. Estrin, R. Govindan, Directed Diffusion: A scalable and robust communication
paradigm for sensor networks. In Proceedings of 6th ACM/IEEE MobiCOM Conference, 2000.

40. B. Krishnamachari, D. Estrin, and S. Wicker, Modelling Data-Centric Routing in Wireless Sensor
Networks. In Proc. of IEEE Infocom, 2002

41. S. Lindsey and C. S. Raghavendra, PEGASIS: Power Efficient GAthering in Sensor Information
Systems. In Proc. of IEEE Aerospace Conference, 2002

42. Moustafa Youssef, Mohamed Younis, and Khaled Arisha, A Constrained Shortest-Path Energy-Aware
Routing Algorithm for Wireless Sensor Networks. Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC), Orlando, Florida, March 2002

43. Anna Ha
�
 Kelei Zhou, A New Heuristic Algorithm for Finding Minimum-cost Multicast Trees with

Bounded Path Delay. International Journal of Network Management Volume 9, Issue 4 July–August
1999

44. Kou L, Markowsky G, Berman L. A fast algorithm for Steiner trees. Acta Information 1981; 15:141–145
45. Kompella VP, Pasquale JC, Polyzos GC. Multicast routing for multimedia communication. IEEE/ACM

Transactions on Networking 1993; 1(3):286–29
46. N. M. Malouch, Z. Liu, D. Rubenstein, and S. Sahu, A Graph Theoretic Approach to Bounding Delay in

Proxy-Assisted, End-System Multicast. In 12th International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV'02), May 2002

47. S. Jagannathan and K. Almeroth, Using Tree Topology for Multicast Congestion Control. In Proc. of
International Conference on Parallel Processing, September 2001

48. Minseok Kwon, Sonia Fahmy. Distribution Overlays: Topology-aware overlay networks for group
communication, International Workshop on Network and Operating System Support for Digital Audio
and Video, Proceeding of the 12th International Workshop on Network and Operating Systems Support
for Digital Audio and Video, 2002

49. R.G. Gallager, P.A. Humblet, and P.M. Spira, A distr ibuted algorithm for minimum weight spanning
trees, Tech. Rep. LIDS-P-906-A, Lab. Inform. Decision Syst., Massachusetts Inst. of Technol.,
Cambridge, MA,Oct. 1979

50. Kamil Sara , Kevin C. Almeroth, Scalable techniques for discovering multicast tree topology, 11th
International workshop on on Network and Operating Systems support for digital audio and video
January 2001

51. Mohamed Younis, Moustafa Youssef, and Khaled Arisha, Energy-Aware Routing in Cluster-Based
Sensor Networks, Proceedings of the 10th IEEE/ACM International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS'02), Fort Worth, Texas,
October 2002

52. Kenneth L. Calvert, James Gri.oen, Bil ly Mullins, Amit Sehgal, and Su Wen, Concast, Design and
implementation of an active network service. IEEE Journal on Selected Areas of Communications, vol.
19, no. 3, pp. 404–409, Mar. 2001

53. Tilman Wolf and Sumi Yunsun Choi, Aggregated Hierarchical Multicast for Active Networks.
Aggregated hierarchical multicast for active networks, Proceedings of IEEE MILCOM, October 2001

54. Thomas Cormen, Charles Leisterson, Ronald Rivest, and Cliff Stein. Introduction to Algorithms,
McGraw Hil l Publishing Company and MIT Press, 2001.

