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Abstract 
 
Self-replicating malicious codes (worms) are 

striking the Internet vigorously. A particularly 
sophisticated recent introduction is the “killer” worm 
(also called counter-worm or “predator” worm). The 
goal of this research is to explore the interaction 
dynamics between a worm (prey) and an antagonistic 
worm (predator), using mathematical modeling. This 
paper models several interesting combat scenarios of 
two fighting worms, including the effect of antivirus on 
the system behavior. There are few novel findings of 
our enhanced model, such as the prediction of 
oscillatory behavior of interacting worms population 
conforming to existing biological systems. 

 
1.  Introduction 

 
Computer viruses are increasingly becoming a 

major source of productivity drain for internet 
operations. A particularly sophisticated recent 
introduction is the killer worm (also called counter-
worm, predator worm, or good will mobile code). This 
is a new phenomenon that has made headlines recently. 
These worms are out there fighting malicious codes 
(Code-Red, MS-Blast, and Sasser) spread by rival 
virus writer groups. 

There is an interesting digital culture which helps 
the emergence of these predator worms. For example, 
one worm’s authors fight another group to expand their 
peer-to-peer networks, which are later used to launch 
new worms, generate Denial of Service attacks, or 
circulate spam anonymously. In addition, a predator 
worm may spread through a flaw or backdoor of 
another worm. While, predator worms can be 

malicious, they also can be the necessary proactive 
countermeasure to fight zero-day worms.  

The goal of this research is to mathematically model 
the behavior of combating worms. This paper models 
prey-predator dynamics for different interesting 
combat scenarios. For each scenario we present a 
mathematical model that is based on Lotka-Volterra 
equations and then present the corresponding analysis 
using numerical solutions.  

 
1.1 Related work  

 
While modeling worms is not totally new, there’s 

only very few in literature about killer virus (predator 
worm). Two papers are in the same line as our work. 
Toyoizumi and Kara used Lotka-Voltera equations to 
model and analyze the interaction between predator 
worms and traditional worms [1]. They define 
predators as “good will mobile codes” that kill 
malicious viruses. Also, they discuss how to minimize 
predator population without losing their effectiveness. 
Nicol and Lilijenstam define active defenses, as 
techniques that “take the battle to the worm” [4]. They 
model four active defenses two of which are predator 
worms. They also define some effectiveness metrics 
such as the number of protected hosts, total consumed 
bandwidth, and peak scanning rate  

Staniford was the first to attempt to model random 
scanning Internet worms [5]. His model is a 
quantitative theory that explains Code-Red spread. The 
theoretical data generated by his equation fairly 
matched with available Code-Red data.  Later Zou et al 
provided an enhanced model of Code-Red that 
considers the effects worm countermeasures and 
routers congestion [6]. They base their model on 
Kermack-Mckendrick and their simulations and 
numerical solutions better match Code-Red data.  
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2.  Model Basis  

 
2.1 Virus Types 

 
Although the terminologies have not been firmly 

established in literature here we use the term virus to 
relate to the superset of self-replicating malicious 
codes. A worm is a subset of viruses that is network-
aware (use network protocols and parameters to 
spread). Worms can be fully-automated (use port-
scanning) or human-dependent (spread through email.)  

Traditional ways to defend against worms-- called 
defensive techniques (or countermeasures) are based 
on preventing, detecting, and cleaning virus infections. 
These countermeasures include Antivirus and System 
patches. While Antivirus programs can detect and 
clean worms’ infections, System patches cannot 
remove a virus instead it can fix an existing security 
hole and thus prevent worm infection. System patches 
are made available by operating system authors.  

Most predators spread by exclusively penetrating 
already infected machines, called infection-driven 
predator worms. However, some predators attack both 
infected and clean machines, called Vulnerability-
driven predator worms. A predator worm that actively 
scans for prey-infected machine is called active-
spreading predators. On the other hand, some predator 
worms don’t search for a prey worm, instead the prey 
fall in trap once it unknowingly scans a predator-
infected machine. 

Most predators spread by exclusively penetrating 
already infected machines, called infection-driven 
predator worms. However, some predators attack both 
infected and clean machines, called Vulnerability-
driven predator worms. A predator worm that actively 

scans for prey-infected machine is called active-
spreading predators. On the other hand, some predator 
worms don’t search for a prey worm, instead the prey 
fall in trap once it unknowingly scans a predator-
infected machine. Such a predator that depends on prey 
to scanning, is called passive-spreading predator, e.g. 
CR-Clean. Figure 2.1 shows that predator worms are 
first classified according to their victim infection state 
and then classified further according to their scanning 
technique. 

As shown in Figure 2.1, prey worms can be 
patching or non-patching. Prey worms may protect 
themselves from their predators by closing the security 
hole through which they penetrated, thus preventing 
predator from getting in. We call such prey worms a 
patching worm otherwise they are non-patching prey 
worms. 

Worms that can attack an infected machine, wipe 
the existing worm, and takeover that machine are 
called predator worms, e.g. Code-Green, Welchi, and 
Netsky. On the other hand, prey worms are the victims 
of predator worms, e.g. MS-Blast, Bagle, and Sasser. 
Figure 2.1 explains the classification. Internet worms 
according to their predatory role. 

  
2.2 Environment 
 

We assume The Internet size is fixed during any 
infection cycle. Thus, total number of machines 
is M which is constant. Any machine can be either 
susceptible to an infection by some worm (called 
vulnerable) or immune (called removed). Vulnerable 
machines can be penetrated by a worm, and once 
infected they spread the infection on their own. 
Removed machines cannot be infected by a worm for 

Patching 

Internet Worm

Prey Worm Predator Worm

Infection-Driven Vulnerability-Driven Non-
Patching 

Active-
Spreading Passive-

Spreading Figure 2.1. Worm Classification.  Worms can be classified 
according to their predatory characteristics, e.g. their spread 

trigger and scanning technique. 
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some reason; e.g. the worm doesn't run on that 
machine's platform or the machine doesn't have the 
related security flaw. If the number of vulnerable 
machines is S , and number of immune machines is 
R , then MRS =+ is the total number of machines.  
Figure 2.2 shows the two main sets set-S and set-R. 
Usually, vulnerable and removed machines don’t 
switch back and forth. However, in some cases a 
vulnerable machine may become immune; e.g. when 
and operating system patch is applied such that the 
related security flaw is fixed.  

 
A vulnerable machine that is infected by a worm is 

called infectious. All other vulnerable machines that 
are not compromised are in the clean machines set (set-
n) of size )(tn . Machines can change their state from 
clean to infectious, or infectious to clean. We assume 
that an infectious machine is infected by only one of 
two worms: a prey or a predator worm. Infectious 
machines that are infected by a prey worm (worm-x) 
are called set-x, which has cardinality of )(tx . 
Machines that are infected by predator worm (worm-y) 
form set-y with of size )(ty . Figure 2.2 shows the two 
infectious sets and their relation to the clean set. 
Machines in set-x can change state and move into set-
y. The cardinalities of set-n, set-x, and set-y, are 
variable functions of time, where the total sum 

)()()( tytxtnS ++=  is the size of vulnerable 
machines set.   

 
3.  Scenario-1: Prey, Predator Model 

 
In the basic scenario, two combating worms (a prey 

and a predator) spread over a network. Worm-x is a 

traditional prey worm, which spreads by infecting 
clean machines. Worm-y is infection-driven predator 
worm that can spread only by taking over machines 
infected by worm-x. The size of worm-x population at 
anytime is )(tx  while size of worm-y population is 

)(ty . Figure 3.1 describes the interaction between the 
different sets in this scenario. Directed links signifies 
the transition rate of members between two sets.   

Set-x size increases at rate proportional to both the 
size of set-x and set-n. In other words, at anytime the 
increase in the number of machines infected by worm-
x depends on the number of already worm-x machines 
and the number of existing clean machines. On the 
other hand, any encounter between worm-x and worm-
y instances will result in an increase in worm-y 
population on count of worm-x population. Thus, set-y  
size increase at rate proportional to the number of 
worm-x and worm-y infected machines.  

The infection rate of worm-x is the first derivative 
of )(tx . The same applies to worm-y and clean 
machines change rate. The dynamic of the system are 
described by equations 3.1, 3.2, 3.3, and 3.4. 

 

bxyaxn
dt
dx

−=  (3.1)  

bxy
dt
dy

=  (3.2)  

axn
dt
dn

−=  (3.3)  

000 )0(,)0(,)0( nnyyxx ===  
(3.4)  

 set-y 
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Figure 2.2 Machine Sets 
 

Figure 3.1. Transition between the  prey and 
infection-driven predator worms. The circles 
indicate machines' sets, while arrows indicate 

transitions' direction and rate. 
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Both a and b are positive parameters that depend 
on worms' scanning rate and network size. Below, we 
discuss the derivation of a  and b  values. 

 
3.1 Parameters Derivation  

 
Let worm-x scanning rate be r , where r  is the 

number of unique scans generated  by the worm per a 
unit of time. Thus, the total number of scans by all 
members in set-x is rx . Since R+x(t)+y(t)+n(t)=M, 
the value of rx  is the sum of all scans by worm-x of 
all machine sets, as in equation 3.5 

M
rxnrxyrxrxRrx +++

=
2

 (3.5)  

If each time that worm-x scans a clean machine 
results in a new infection, then parameter a  is given 
by equation 3.6 

M
ra =  (3.6)  

Likewise, if every encounter between y-worm and 
worm-x infected machine results in a takeover by 
worm-y, then parameter b  is given by equation 3.7 

M
rb =  (3.7)  

The previous discussion applies to passive-
spreading predator. On the other hand, an active-
spreading predator does its own scanning in order to 
find worm-x infected machines. If we assume that 
worm-y has scanning rate be v , the total number of 
scanning by members in set-y is vy  satisfies equation 
3.8 

M
vynvyvyxvyRvy +++

=
2

 (3.8)  

Since encounters between worm-x and worm-y 
result from both scans by worm-x and worm-y. The 
parameter b  can be described by equation 3.9 

M
rvb +

=  (3.9)  

 
3.2 Analysis  
  

We used numerical solution to solve the equation 
system described in 3.1, 3.2, 3.3, and 3.4. We used 
Maple to draw the curves in figure 3.2 and 3.3. 

Multiple curves in red for )(tx  and in green for )(ty  
are plotted for different values of ba : .  

 

The general behavior described here shows that 
initially worm-x increase exponentially as it would 
without worm-y existence. Worm-y increase 
proportional to increase in worm-x populations. The 
increase in worm-y population results in decrease in 
worm-x population, as worm-y takeover worm-x 
machines. The )(tx  curve reaches its maximum when 
it infects all vulnerable machines (figure 3.2) or when 
worm-y is large enough to consume more worm-x 
machines than can worm-x reproduce (figure 3.3). 
Curve )(ty  continues to increase until it uses up all 
available worm-x members, where it hits its maximum 
and freeze thereafter. The system reaches steady state 
when both infection rates are zero. This occurs when 

Figure 3.3. a.M=10, M=3000000, x0=100, 
y0=1, n0=1000000. 

Figure 3.2. a.M=10, M=3000000, x0=100, y0=1, 
n0=1000000. 
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all worm-x infected machines are re-infected by worm-
y  ( )(tx  is zero).  
In figure 3.2 Syx == )max()max( . In other 
words the maximum value of the curves is size of 
vulnerable population. We name this condition as 
Prey-outbreak condition since it occurs as result of 
faster growth in prey population than predator 
population ( ab ≤ ) 

In figure 3.3 )max()max( yx ≤ . This condition 
is called prey-cutback condition, which occurs when 
the predator population is growing faster than the prey 
( ab > ).  
 
4.  Scenario-2: Prey, Vulnerability-Driven 
Predator Model 

 
We expand the basic by considering vulnerability-

driven type of predator, where worm-y can infect both 
clean and worm-x infected machines. Figure 4.1 
describes the transitions between the machines sets. 
Worm-x increases as in the basic scenario. However, 
worm-y increases by targeting clean machines at rate 
cyn  ( c  is positive) in addition to infecting worm-x 
machines. The system dynamics can be described in 
equations 4.1, 4.2, 4.3, and 4.4. 

 

bxyaxn
dt
dx

−=  (4.1)  

bxycyn
dt
dy

+=  (4.2)  

cynaxn
dt
dn

−−=  (4.3)  

000 )0(,)0(,)0( nnyyxx ===  
(4.4)  

Parameter a  and b  values are as derived in 
previous section. The value of c  which depends on 
both worm-y scanning rate and network size is given in 
equation 4.5 

M
vc =  (4.5)  

In case of vulnerability-driven predator ( 0>c ) the 
predator has more than one way to spread and thus isn't 
totally dependent on the prey population. Any increase 
in prey population will increase the predator population 
and increasing the predator population will decrease 
prey population. However, a decrease in the prey 
population will not lead to a decrease in the predator's 
population.  

 
Figure 4.2 shows the plot of )(tn , )(tx  and )(ty . 

Compared with figure 3.2 and 3.3, the behavior is 
similar with two exceptions. First the prey-outbreak 
condition doesn't happen. On the other hand )(ty  
reaches the maximum of environment capacity, which 
we call predator-outbreak condition. The figure shows 
that prey-cutback condition will occur. 
 
5.  Scenario-3: Prey, Predator, and 
Antivirus Model 

 
Worm-x and worm-y are prey and predator worms 

that are competing over an environment. Worm-y is 
vulnerability-driven predator. Some machines on the 
network run antivirus software that can detect and 
clean both worms’ infections. This scenario is 

Figure 4.2. a.M=10, b.M=25, c.M=5, 
M=3000000, x0=100, y0=1, n0=1000000.  

Figure 4.1.  Transition between prey and 
vulnerability-driven predator worms. The 

circles represent machine sets, while arrows 
indicate transitions’ between them. 
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analogous to harvesting (spraying, or fishing) 
phenomena in biological systems, where some third-
party eliminates members of both combating 
populations. We assume that as people become aware 
of an epidemic, they start to install or update antivirus 
software at increasing rate. 

We assume that the number of machines with 
antivirus update to be an increasing function of time. 
The functions )(tzx  and )(tz y  are the fraction of 
worm-x and worm-y infected machines, respectively, 
that are cleaned by the antivirus software at anytime. 
We define )(tzx  and )(tz y  in equations 4.1 and 4.2. 

The constants xd  and yd  are fraction numbers that 
determines the antivirus effectivenessy. 

)1/()( += ttdtz yy  
(5.1)  

)1/()( += ttdtz xx  
(5.2)  

 

Figure 5.1 describes the transition of members 
between machines’ sets as a result of the two worms 
and antivirus reactions. Worm-x increase on count of 
clean machines set (set-n) at rate axn . Meanwhile, 
set-n gains worm-x machines back at rate xxz , once 
cleaned by the an antivirus. On the other hand, worm-y 
increase on count of both clean and worm-x machines 
at rate bxycyn + . In contrary of all previous 

scenarios, set-y decreases at rate )(tyz y , as result of 
antivirus effect. The system behavior is described by 
equations 5.3, 5.4, 5.5, and 5.6   

xxzbxyaxn
dt
dx

−−=  (5.3)  

yyzbxycyn
dt
dy

−+=  (5.4)  

yx yzxzcynaxn
dt
dn

++−−=  (5.5)  

000 )0(,)0(,)0( nnyyxx ===  
(5.6)  

 
Figure 5.2 shows a new type of behavior, both 

curves )(tx  and )(ty  oscillate for a while as they 
gradually become constant lines. This phenomenon is a 
result of introducing the antivirus effect, which kills 
predators as will as prey infections. Originally, the 
increase in predators population causes degrade in prey 
population, and this is what is initially happening in 
this case. However, as the antivirus cleans some 
predator infections causing its population to drop, more 
prey infections will have chance to survive, and thus 
prey population increases again. Increasing prey 
population results in increasing predator population. 
However the second peek is lower than the first once 
since the antivirus is continuously reducing both 
populations. This periodical behavior repeats itself 
each time with lower maximum values. The oscillation 
turns into straight lines with some vibration, which 
eventually diminishes, resulting into two constant 
lines. At this stage the system reaches its steady state 
or equilibrium point. 
 
6.  Conclusion & Future Work 

 

Figure 5.2. c.M=0, a.M=10, b.M=25, 
dx=dy=0.07, x0=100, y0=1, n0=1000000, 

M=3000000.  

Figure 5.1.  Inter-set transition for scenario-
2. The circles are sets. While arrows are 

transitions’ direction and their rate. 
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In this paper we have presented several scenarios of 
virus-virus warfare. We classify worm types according 
to their predatory characteristics. We study and analyze 
the prey and predator interaction, and investigate the 
related parameters' values. We study several advanced 
scenarios, including antivirus effect on prey-predator 
system. Since the beginning of this work co-
incidentally several ware-fare has been reported in real 
Internet. However, we must warn this work does not 
model the specific warfare. 

There are actually additional scenarios which can be 
potentially modeled. One example is Cascade Chain 
Worms (Wave Worm). Many worms have more than 
one version. The new versions are meant to update the 
old ones. However, existence of old versions can have 
positive or negative effect of the spread of the new 
version. Our current model considers the number 
infected machines to be the worm population size. This 
is true as long as each machine has only single 
infection. In the future we will extend our work to 
study the Multi-Infection machine scenario. Up to 
date, all existing models, including those in this paper, 
are based on random network model. In reality, the 
Internet is a scale-free network [9], which can help in 
the spread of worms’ vaccines  [8].  
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