Architecture Document

MPEG Dragon: MPEG-2 Client Software for Windows CE devices

Rouhollah Rahmani

Internetworking and Media Communications Research Laboratories

Department of Math & Computer Science

Kent State University, 233 MSB, Kent, OH 44242

(Last Revised January 31, 2001)

javed@kent.edu

Abstract Design

This documentation has been broken into three sections: Abstract Design, Class & Struct Design, and Function Design. Abstract Design will cover the general program flow and structure. Class & Struct Design will outline the classes and structures used in this program and will detail each. Function design will outline the functions used in this program and will detail each.

Mpeg Dragon was designed for WinCE 3.0, specifically for the Pocket PC. It follows the general Windows design flow. The MPEG core was developed from the open source program mpeg2play [Stefan Eckart, July 1994]. The design is only partially object oriented and contains one class: VIDEOSOURCE. The remainer of the program is an interaction between structures and functions.

Windows Design Flow:

Windows programs are based around an intricate relationship with the operating system. All input and output must first pass throught the operating system. The program can never directly interact with the user. Due to this fact, Windows has a complex messaging system that progams use to perform tasks, and a relatively standardized Windows programming style has been developed over time. Mpeg Dragon adheres to this “standard”.

WinMain is the equivalent of main from a conventional C++ program. In WinMain there is an infinite loop that receives and distributes messages that are received by the program. Those distributed messsage are send to MainWinProc, who then distributes the message to the appropriate message handling function. If the message is sent to DoCommandMain, DoCommandMain further distrubutes the message down another level. The Mpeg Dragon architecture contains two programmer defined procedures. MainWinProc is the primary message handling procedure. The second procedure, UrlDlgProc, is invoked by the function DoMainFileUrl. When UrlDlgProc is invoked, a dialog box is created. The user inputs that are sent to that dialog and the resulting messages are handled by UrlDlgProc and not by MainWinProc. The messaging design flow is more exactly illustrated in Figure 1.

Figure1. Mpeg Dragon: Windows Messaging Flow

Class & Struct Design

The Mpeg Dragon decoder core is based almost wholely on Mpeg2play which was written largely in C. Unfortunately since C is not object oriented, neither was Mpeg2play. And unfortunately, the extensive use of global variables makes it very difficult if not impossible to develop a true object oriented program from the Mpeg2play source. Mpeg Dragon does however use a partially object oriented design: The video source is contained and manipulated within the object VIDEOSOURCE. Although not an object, the Windows message system is more or less self contained. And two structures, decodeUINT and decodeCMD are used to aid message handling.

Structs

Mpeg Dragon consists of four structures: decodeUINT, decodeCMD, FILEDATA, and URLDATA. Both decodeUINT and decodeCMD are used to aid in the Windows messaging process. Bothe FILEDATA and URLDATA are used in conjunction with VIDEOSOURCE objects.

decodeUINT:

DecodeUINT is used to associate a message with a function. It contains two members and is defines as follows:

struct decodeUINT

{

UINT Code;

LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);

};

decodeCMD:

DecodeCMD is used to associate a menu ID with a function. Menu IDs are specific information that can be extracted from the parameters of a WM_COMMAND message. It contains two members as well and is defined as follows:

struct decodeCMD

{

UINT Code;

LRESULT (*Fxn)(HWND, WORD, HWND, WORD);

};

FILEDATA:

FILEDATA is used to pass information nessecary for file creation to a VIDEOSOURCE object. It is defined as follows:

typedef struct

{

TCHAR
szFileName[MAXBUFSIZE];

DWORD
dwDesiredAccess;

DWORD
dwShareMode;

DWORD
dwCreationDisposition;

DWORD
dwFlagsAndAttributes;

} FILEDATA, *LPFILEDATA;

The members of FILEDATA correspond directly with the parameters that feed into the CreateFile function from the Windows API and should be treated as such.

URLDATA:

URLDATA is used to pass information nessecary for the establishment of a network connection to a VIDEOSOURCE object. It is defined as follows:

typedef struct

{

TCHAR
sin_addr[MAXBUFSIZE];

TCHAR
sin_port[MAXBUFSIZE];

} URLDATA, *LPURLDATA;

sin_addr is specified as the IP address of the connection. sin_port is specified as the specific port of the connection. URLDATA is a condensed version of the SOCKADDR_IN struct found in Winsock.h. From URLDATA, a VIDEOSOURCE object has enough information to create the appropriate SOCKADDR_IN structure. The decision to not directly use SOCKADDR_IN was due to encapsulation principles. The programmer using VIDEOSOURCE should need not have any knowledge of how to create a network connection. Knowing where to connect to it enough, and VIDEOSOURCE should handle the rest.

Classes

VIDEOSOURCE

Mpeg Dragon has one class, VIDEOSOURCE. The original Mpeg2play could only read from files. Mpeg Dragon needed to read from files and ports. To simplify this transition, VIDEOSOURCE was created. The class object can be set to either a file or a network ports. The primary advantage is that the interface for a using either a file or a network is identical. Furthermore, all file and network creation and destruction is fully encapsulated. Hence, once the object is initialized, the class user can read and interact with their specified source in a unified fashion. The interface was created to resemble the interface of Windows API file functions.

The implementation of VIDEOSOURCE does not use polymorphism. Instead, it utilizes a monolithic code that uses an internal variable, m_dwfSourceType, to determine what the source is. When a member function is called, the function’s behavior is determined by the m_dwfSourceType. This is an important underlying aspect of the design.
Private Member Variables:

	Variable
	Description

	FILEDATA
m_FileData;
	Stores file data, if provided

	URLDATA
m_UrlData;
	Stores url data, if provided

	DWORD
m_dwfSourceType;
	Double Word flag. Specifies Source Type. Can be set to either

FILE_SOURCE

0

NETWORK_SOURCE
1

PREV_BUFFER

5

If set to PREV_BUFFER, then object reads from (reuses) the last buffer it read.

	HANDLE
m_hFile;
	Handle to file, used to interact with file

	SOCKET
m_socket;
	Socket, used to interact with network ports

	BOOL

fSendPrevBuffer;
	Boolean flag. If set, the next call to ReadSource will return the previous buffer read.

	LPBYTE
m_prevBuffer;
	Previous buffer that was read.

	DWORD
m_dwPrevBytesRead;
	Number of bytes read into previous buffer

Member Functions:

BOOL
SetSource(PVOID pStruct, DWORD dwfType)

Parameters:

pStruct

- pointer to either a LPFILEDATA or a LPURLDATA
structure.

dwfType
- double word flag. May be set to one of the predefined types FILE_SOURCE or NETWORK_SOURCE.

Function:

The function performs a switch on dwfType and then either fills the m_FileData struct or the m_UrlData struct accordingly, and sets m_dwfSourceType. SetSource should only called once when the VIDEOSOURCE object is created, or if one wishes to switch between reading a file or from a port. The next call after a call to SetSource must be InitializeSource. They are complimentary functions and must be used together.

Returns:

Returns TRUE is successful, and FALSE if the parameters were incorrectly set.

BOOL
InitializeSource()
Parameters:

None.

Function:

If dwfType == FILE_SOURCE, then it opens the file and stores its handle in hFile. If dwfType == NETWORK_SOURCE, then it establishes a connection to the network port. It should be called after a call to SetSource.

Returns:

Returns TRUE is successful, and FALSE if there was in intialization error.

BOOL
ReadSource(LPBYTE lpBuffer, DWORD nNumberOfBytesToRead,

 LPDWORD lpNumberOfBytesRead)

Parameters:

lpbuf

- buffer to copy to

nNumberOfBytesToRead
- number of bytes to read from source

lpNumberOfBytesRead
- pointer to number of byte read

Function:

ReadSource reads from the either a file, a port, or the previous buffer. If fSendPrevBuffer is set, then the lpBuffer is filled with the previous buffer and lpNumberOfBytesRead is set to m_dwPrevBytesRead. Then fSendPrevBuffer is reset to FALSE. Otherwise either the file source or the network source are read from using API function calls and lpBuffer is filled by those functions. lpNumberOfBytesRead is set to the size of the returned lpBuffer.

Returns:

Returns TRUE if successful and FALSE if there was a problem (ie: if source not set).

BOOL
SetSourcePointer(LONG lDistanceToMove, DWORD dwMoveMethod)

Parameters:

lDistanceToMove

- offset to move from location

dwMoveMethod Function
- can be set to either PREVBUFFER for both network and file sources, or the predefined FILE_BEGIN, FILE_CURRENT, FILE_END for a file source.

Function:
SetSourcePointer sets where to read the next buffer from. For a file source, the can be any offset from the beginning, current, or end position of the file. For a network source, this is inapplicable.

Additionally, the “position” can be set to be the previous buffer read. This means that the next call to ReadSource will return the previous buffer. The next subsequent call after that will once again be a standard read from the source. This applies to both file and network sources.

Returns:

Returns TRUE if successful and FALSE if object source was not properly set.

DWORD GetSourceType()

Parameters:

None.

Function:

Allows to class user to query source type.

Returns:

Returns source type.

TCHAR* GetUrlName()

Parameters:

None.

Function:

Allows class user to query the url name if source type is a network.

Returns:

Returns pointer to a string that contains the url, if source type is a network. Otherwise returns NULL.

TCHAR* GetPortName()

Parameters:

None.

Function:

Allows class user to query the port if source type is a network.

Returns:

Returns pointer to a string that contains the port, if source type is a network. Otherwise, returns NULL.

TCHAR* GetFileName()

Parameters:
None.

Function:

Allows class user to query the file name, if source type is a file. GetFileName extracts the name of the file itself and not its path.

Returns:

Returns pointer to a string that contains the file name, if source type is a file. Otherwise, returns NULL.
BOOL
CloseSource()

Parameters:

None.

Function:

CloseSource either closes the network connection or releases the file handle. If the class user wishes to reestablish a connection to the source, he must once again call InitializeSource.

Returns:

Returns TRUE if successful and FALSE is the source was not set.

DoMainStop

DoMainPlay

DoMainFileUrl

DoMainFileOpen

DoMainCommandExit

DoSettingChangeMain

DoMouseMain

DoDestroyMain

DoActivateMain

DoCommandMain

DoHibernateMain

DoCreateMain

DoPaintMain

MainWndProc

WinMain

UrlDlgProc

PAGE
8

